Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

710 lines
29 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/sets/function.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:48 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>What is a Function</title>
<style type="text/css">
<!--
.style1 {font-weight: bold}
-->
</style><!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">What is a Function?</h1>
<p class="center"><span class="larger">A function relates an input to an output.</span></p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/function-cogs.svg" alt="function cogs" height="137" width="200"></p>
<p><br></p>
<p>It is like a machine that has an input and an output.</p>
<p>And the output is related somehow to the input.</p>
<div style="clear:both">
</div>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td class="huge">&nbsp; f(x) &nbsp;</td>
<td>
<p>"<b>f(x) = ...</b> " is the classic way of writing a function.<br>
And there are other ways, as you will see!</p> </td>
</tr>
</tbody></table>
</div>
<h2>Input, Relationship, Output</h2>
<p>We will see many ways to think about functions, but there are always three main parts:</p>
<ul>
<li>The input</li>
<li>The relationship</li>
<li>The output</li>
</ul>
<div class="example">
<h3>Example: "Multiply by 2" is a very simple function.</h3>
<p>Here are the three parts:</p>
<div class="center">
<table align="center" cellpadding="5" border="1">
<tbody>
<tr>
<th align="center">Input</th>
<th align="center"><b><i>Relationship</i></b></th>
<th align="center">Output</th>
</tr>
<tr>
<td style="text-align:center;">0</td>
<td style="text-align:center;">× 2</td>
<td style="text-align:center;">0</td>
</tr>
<tr>
<td style="text-align:center;">1</td>
<td style="text-align:center;">× 2</td>
<td style="text-align:center;">2</td>
</tr>
<tr>
<td style="text-align:center;">7</td>
<td style="text-align:center;">× 2</td>
<td style="text-align:center;">14</td>
</tr>
<tr>
<td style="text-align:center;">10</td>
<td style="text-align:center;">× 2</td>
<td style="text-align:center;">20</td>
</tr>
<tr>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
</tr>
</tbody></table>
</div>
<p>For an input of 50, what is the output?</p>
</div>
<h2>Some Examples of Functions</h2>
<ul>
<div class="bigul">
<li><b>x<sup>2</sup></b> (squaring) is a function</li>
<li><b>x<sup>3</sup>+1</b> is also a function</li>
<li><a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a> are functions used in trigonometry</li>
<li>and there are lots more!</li>
</div>
</ul>
<p>But we are not going to look at specific functions ...<br>
<span class="indent50px">... instead we will look at the <b>general idea</b> of a function.</span></p>
<h2>Names</h2>
<p>First, it is useful to give a function a <b>name</b>.</p>
<p>The most common name is "<i><b>f</b></i>", but we can have other names like "<i><b>g</b></i>" ... or even "<i><b>marmalade</b></i>" if we want.</p>
<p>But let's use "f":</p>
<p class="center"><img src="images/function-fx-x2.svg" alt="f(x) = x^2" height="92" width="381"></p>
<p class="center larger">We say <i>"f of x equals x squared"</i></p>
<p>what goes <b>into</b> the function is put inside parentheses () after the name of the function:</p>
<p class="center larger">So <b><i>f(x)</i></b> shows us the function is called "<b><i>f</i></b>", and "<b><i>x</i></b>" goes <b>in</b></p>
<p>And we usually see what a function does with the input:</p>
<p class="center larger"><b><i>f(x) = x<sup>2</sup></i></b> shows us that function "<i><b>f</b></i>" takes "<i><b>x</b></i>" and squares it.</p>
<p class="center">&nbsp;</p>
<div class="example">
<p>Example: with <b>f(x) = x<sup>2</sup></b>:</p>
<ul>
<li>an input of 4</li>
<li>becomes an output of 16.</li>
</ul>
<p class="center">In fact we can write<b> f(4) = 16</b>.</p>
</div>
<p>&nbsp;</p>
<h2>The "x" is Just a Place-Holder!</h2>
<p>Don't get too concerned about "x", it is just there to show us where the input goes and what happens to it.</p>
<p>It could be anything!</p>
<div class="center80">
<p>So this function:</p>
<p class="center larger">f(x) = 1 - x + x<sup>2</sup></p>
<p>Is the same function as:</p>
<ul>
<li>f(q) = 1 - q + q<sup>2</sup></li>
<li>h(A) = 1 - A + A<sup>2</sup></li>
<li>w(θ) = 1 - θ + θ<sup>2</sup></li>
</ul>
<p>The variable (x, q, A, etc) is just there so we know where to put the values:</p>
<p class="center"><span class="larger">f(<b>2</b>) = 1 - <b>2</b> + <b>2</b><sup>2</sup> = 3</span></p>
</div>
<p>&nbsp;</p>
<h2>Sometimes There is No Function Name</h2>
<p>Sometimes a function has no name, and we see something like:</p>
<p class="center larger">y = x<sup>2</sup></p>
<p>But there is still:</p>
<ul>
<li>an input (x)</li>
<li>a relationship (squaring)</li>
<li>and an output (y)</li>
</ul>
<h2>Relating</h2>
<p>At the top we said that a function was <b>like</b> a machine. But a function doesn't really have belts or cogs or any moving parts - and it doesn't actually destroy what we put into it!</p>
<p class="center larger">A function <i><b>relates</b></i> an input to an output.</p>
<p>Saying "<b>f(4) = 16</b>" is like saying 4 is somehow related to 16. Or 4 → 16</p>
<div class="example">
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/tree.jpg" alt="tree" height="148" width="172"></p>
<p>Example: this tree grows 20 cm every year, so the height of the tree is <i><b>related</b></i> to its age using the function <i><b>h</b></i>:</p>
<p class="center"><b><i>h</i>(age) = age × 20</b></p>
<p>So, if the age is 10 years, the height is:</p>
<p class="center"><span class="style1"><i>h</i>(10) = 10 × 20 = 200 cm</span></p>
<p>Here are some example values:</p>
<div class="center">
<table align="center" cellpadding="5" border="1">
<tbody>
<tr>
<th align="center">age</th>
<th align="center"><b><i>h</i>(age) = age × 20</b></th>
</tr>
<tr>
<td style="text-align:center;">0</td>
<td style="text-align:center;">0</td>
</tr>
<tr>
<td style="text-align:center;">1</td>
<td style="text-align:center;">20</td>
</tr>
<tr>
<td style="text-align:center;">3.2</td>
<td style="text-align:center;">64</td>
</tr>
<tr>
<td style="text-align:center;">15</td>
<td style="text-align:center;">300</td>
</tr>
<tr>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
</tr>
</tbody></table>
</div>
</div>
<p>&nbsp;</p>
<h2>What Types of Things Do Functions Process?</h2>
<div class="indent50px">
<p class="larger"><i>"Numbers"</i> seems an obvious answer, but ...</p>
</div>
<table align="center" width="90%" border="0">
<tbody>
<tr>
<td width="11%" valign="top"><br>
</td>
<td width="89%">
<p>... <b>which</b> numbers?</p>
<p>For example, the tree-height function <b><i>h</i>(age) = age×20</b> makes no sense for an age less than zero.</p></td>
</tr>
<tr>
<td width="11%"><br>
</td>
<td width="89%"> ... it could also be letters ("A"→"B"), or ID codes ("A6309"→"Pass") or stranger things. </td>
</tr>
</tbody></table>
<p>So we need something <b>more powerful</b>, and that is where <a href="sets-introduction.html">sets</a> come in:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/various-reals.svg" alt="various real numbers" height="61" width="115"></td>
<td valign="middle">
<h3>A set is a collection of things.</h3>
<p>Here are some examples:</p>
<div class="indent50px">
<ul>
<li>Set of even numbers: {..., -4, -2, 0, 2, 4, ...}</li>
<li>Set of clothes: {"hat","shirt",...}</li>
<li>Set of prime numbers: {2, 3, 5, 7, 11, 13, 17, ...}</li>
<li>Positive multiples of 3 that are less than 10: {3, 6, 9}</li>
</ul>
</div> </td>
</tr>
</tbody></table>
</div>
<p>Each individual <b>thing in the set</b> (such as "4" or "hat") is called a <b>member</b>, or <b>element</b>.</p>
<p>So, a function takes <b>elements of a set</b>, and gives back <b>elements of a set</b>.</p>
<h2>A Function is Special</h2>
<p>But a function has <b>special rules</b>:</p>
<ul>
<li>It must work for <b>every</b> possible input value</li>
<li>And it has only <b>one relationship</b> for each input value</li>
</ul>
<p>This can be said in one definition:</p>
<div class="def">
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/function-sets.svg" alt="function sets X to Y" height="157" width="253"></p>
<h3 class="center">Formal Definition of a Function</h3>
<p class="center larger">A function relates <b>each element</b> of a set<br>
with <b>exactly one</b> element of another
set<br>
(possibly the same set).</p>
</div>
<p>&nbsp;</p>
<h2>The Two Important Things!</h2>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td align="center" width="50" valign="top">
<p class="larger">1.</p></td>
<td style="width:550px;">
<p><span class="larger">"...each element..."</span> means that every element in <b>X</b> is related to some element in <b>Y</b>.</p>
<p>We say that the function <i><b>covers</b></i> <b>X</b> (relates every element of it).</p>
<p>(But some elements of <b>Y</b> might not be related to at all, which is fine.)</p></td>
</tr>
</tbody></table>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td align="center" width="50" valign="top">
<p class="larger">2.</p></td>
<td style="width:550px;">
<p><span class="larger">"...exactly one..."</span> means that a function is <i><b>single valued</b></i>. It will not give back 2 or more results for the same input.</p>
<p class="center large">So "f(2) = 7 <b>or</b> 9" is not right!</p></td>
</tr>
</tbody></table>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td colspan="3">
<p>"One-to-many" is <b>not</b> allowed, but "many-to-one" <b>is</b> allowed:</p></td>
</tr>
<tr style="text-align:center;">
<td><img src="images/function-sets-1-2.gif" alt="function" height="119" width="175"></td>
<td style="width:40px;">&nbsp;</td>
<td><img src="images/function-sets-2-1.gif" alt="function" height="126" width="203"></td>
</tr>
<tr style="text-align:center;">
<td>(one-to-many)</td>
<td>&nbsp;</td>
<td>(many-to-one)</td>
</tr>
<tr style="text-align:center;">
<td>This is <b>NOT</b> OK in a function</td>
<td style="width:40px;">&nbsp;</td>
<td>But this <b>is</b> OK in a function</td>
</tr>
</tbody></table>
<p>When a relationship does <b>not</b> follow those two rules then it is <b>not a function</b> ... it is still a <b>relationship</b>, just not a function.</p>
<div class="example">
<h3>Example: The relationship x → x<sup>2</sup></h3>
<p class="center"><img src="images/function-sets-x2.svg" alt="function " height="157" width="253"></p>
<p class="center">Could also be written as a table:</p>
<div class="center">
<table align="center" border="1">
<tbody>
<tr>
<th align="center" width="70">X: x</th>
<th align="center" width="70">Y: x<sup>2</sup></th>
</tr>
<tr>
<td style="text-align:center;">3</td>
<td style="text-align:center;">9</td>
</tr>
<tr>
<td style="text-align:center;">1</td>
<td style="text-align:center;">1</td>
</tr>
<tr>
<td style="text-align:center;">0</td>
<td style="text-align:center;">0</td>
</tr>
<tr>
<td style="text-align:center;">4</td>
<td style="text-align:center;">16</td>
</tr>
<tr>
<td style="text-align:center;">-4</td>
<td style="text-align:center;">16</td>
</tr>
<tr>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
</tr>
</tbody></table> </div><br>
<p><b>It is a function</b>, because:</p>
<ul>
<li>Every element in X is related to Y</li>
<li>No element in X has two or more relationships</li>
</ul>
<p>So it follows the rules.</p>
<p>(Notice how both <b>4</b> and <b>-4</b> relate to <b>16</b>, which is allowed.)</p>
</div>
<div class="example">
<h3>Example: This relationship is <b>not</b> a function:</h3>
<p class="center"><img src="images/relation-not-function.svg" alt="function " height="157" width="253"></p>
<p>It is a <b>relationship</b>, but it is <b>not a function</b>, for these reasons:</p>
<ul>
<li>Value "3" in X has no relation in Y</li>
<li>Value "4" in X has no relation in Y</li>
<li>Value "5" is related to more than one value in Y</li>
</ul>
<p>(But the fact that "6" in Y has no relationship does not matter)</p>
</div>
<p>&nbsp;</p>
<p style="float:left; margin: 0 30px 5px 0;"><img src="images/vertical-line-test.svg" alt="function not single valued" height="177" width="230"></p>
<h2>Vertical Line Test</h2>
<p>On a graph, the idea of <b>single valued</b> means that no vertical line ever crosses more than one value.</p>
<p>If it <b>crosses more than once</b> it is still a valid curve, but is <b>not a function</b>.</p>
<p class="center80">Some types of functions have stricter rules, to find out more you can read <a href="injective-surjective-bijective.html">Injective, Surjective and Bijective</a></p>
<h2>Infinitely Many</h2>
<p>My examples have just a few values, but functions usually work on sets with infinitely many elements.</p>
<div class="example">
<h3>Example: y = x<sup>3</sup></h3>
<ul>
<li>The input set "X" is all <a href="../numbers/real-numbers.html">Real Numbers</a></li>
<li>The output set "Y" is also all the Real Numbers</li>
</ul>
<p>We can't show ALL the values, so here are just a few examples:</p>
<table align="center" border="1">
<tbody>
<tr>
<th align="center" width="90">X: x</th>
<th align="center" width="90">Y: x<sup>3</sup></th>
</tr>
<tr>
<td style="text-align:center; width:90px;">-2</td>
<td style="text-align:center; width:90px;">-8</td>
</tr>
<tr>
<td style="text-align:center; width:90px;">-0.1</td>
<td style="text-align:center; width:90px;">-0.001</td>
</tr>
<tr>
<td style="text-align:center; width:90px;">0</td>
<td style="text-align:center; width:90px;">0</td>
</tr>
<tr>
<td style="text-align:center; width:90px;">1.1</td>
<td style="text-align:center; width:90px;">1.331</td>
</tr>
<tr>
<td style="text-align:center; width:90px;">3</td>
<td style="text-align:center; width:90px;">27</td>
</tr>
<tr>
<td style="text-align:center; width:90px;">and so on...</td>
<td style="text-align:center; width:90px;">and so on...</td>
</tr>
</tbody></table>
<p>&nbsp;</p>
</div>
<h2>Domain, Codomain and Range</h2>
<p>In our examples above</p>
<ul>
<li>the set "X" is called the <b>Domain</b>,</li>
<li>the set "Y" is called the <b>Codomain</b>, and</li>
<li>the set of elements that get pointed to in Y (the actual values produced by the function) is called the <b>Range</b>.</li>
</ul>
<p>We have a special page on <a href="domain-range-codomain.html">Domain, Range and Codomain</a> if you want to know more.</p>
<h2>So Many Names!</h2>
<p>Functions have been used in mathematics for a very long time, and lots of different names and ways of writing functions have come about.</p>
<p>Here are some common terms you should get familiar with:</p>
<p class="center"><img src="images/function-parts.svg" alt="Function Parts" height="245" width="579"></p>
<div class="example">
<h3>Example: <b>z = 2u<sup>3</sup></b>:</h3>
<ul>
<li>"u" could be called the "independent variable"</li>
<li>"z" could be called the "dependent variable" (it <b>depends on</b> the value of u)</li>
</ul>
</div>
<div class="example">
<h3>Example: <b>f(4) = 16</b>:</h3>
<ul>
<li>"4" could be called the "argument"</li>
<li>"16" could be called the "value of the function"</li>
</ul>
</div>
<div class="example">
<h3>Example: <b>h(year) = 20 × year</b>:</h3>
<p class="center"><img src="images/parameter.svg" alt="eq" height="180" width="395"></p>
<ul>
<li>h() is the function</li>
<li>"year" could be called the "argument", or the "variable"</li></ul>
<p class="words"><i>For <b>software </b>"year" is called the parameter, and the value given to the parameter is called the variable!</i></p>
<ul>
</ul>
</div>
<p>We often call a function "f(x)" when in fact the function is really "f"</p>
<h2>Ordered Pairs</h2>
<p>And here is another way to think about functions:</p>
<p class="center larger">Write the input and output of a function as an "ordered pair", such as (4,16).</p>
<p>They are called <b>ordered</b> pairs because the input always comes first, and the output second:</p>
<p class="center"><span class="larger">(input, output)</span></p>
<p>So it looks like this:</p>
<p class="center"><span class="larger">( <b>x</b>, <b>f(x)</b> )</span></p>
<div class="example">
<p>Example:</p>
<p class="center"><b>(4,16)</b> means that the function takes in "4" and gives out "16"</p>
</div>
<h3>Set of Ordered Pairs</h3>
<p>A function can then be defined as a <b>set</b> of ordered pairs:</p>
<div class="example">
<p>Example: <b>{(2,4), (3,5), (7,3)}</b> is a function that says</p>
<p class="center">"2 is related to 4", "3 is related to 5" and "7 is related 3".</p>
<p>Also, notice that:</p>
<ul>
<li>the domain is <b>{2,3,7}</b> (the input values)</li>
<li>and the range is <b>{4,5,3}</b> (the output values)</li>
</ul>
</div>
<p>But the function has to be <b>single valued</b>, so we also say</p>
<p class="center larger">"if it contains (a, b) and (a, c), then b must equal c"</p>
<p>Which is just a way of saying that an input of "a" cannot produce two different results.</p>
<div class="example">
<p>Example: {(<b>2</b>,<b>4</b>), (<b>2</b>,<b>5</b>), (7,3)} is <b>not</b> a function because {2,4} and {2,5} means that 2 could be related to 4 <b>or</b> 5.</p>
<p>In other words it is not a function because it is <b>not single valued</b></p>
</div>
<h3>&nbsp;</h3>
<p style="float:left; margin: 0 10px 5px 0;"><a href="../data/cartesian-coordinates-interactive.html"><img src="../data/images/interactive-cartesian-coordinates.gif" alt="interactive-cartesian-coordinates" height="150" width="150"></a></p>
<h3>A Benefit of Ordered Pairs</h3>
<p>We can graph them...</p>
<p>... because they are also <a href="../data/cartesian-coordinates.html">coordinates</a>!</p>
<p>So a set of coordinates is also a function (if they follow
the rules above, that is)</p>
<p>&nbsp;</p>
<h2>A Function Can be in Pieces</h2>
<p>We can create functions that behave differently depending on the input value</p>
<div class="example">
<h3>Example: A function with two pieces:</h3>
<ul>
<li>when x is less than 0, it gives 5,</li>
<li>when x is 0 or more it gives x<sup>2</sup></li>
</ul>
<div class="center">
<table style="border: 0;">
<tbody>
<tr>
<td><img src="images/function-piecewise-c.gif" alt="Piecewise Function" height="189" width="176"> </td>
<td style="width:20px;">&nbsp;</td>
<td>Here are some example values:<br>
<table align="center" border="1">
<tbody>
<tr>
<th align="center" width="50">x</th>
<th align="center" width="50">y</th>
</tr>
<tr>
<td style="text-align:center;">-3</td>
<td style="text-align:center;">5</td>
</tr>
<tr>
<td style="text-align:center;">-1</td>
<td style="text-align:center;">5</td>
</tr>
<tr>
<td style="text-align:center;">0</td>
<td style="text-align:center;">0</td>
</tr>
<tr>
<td style="text-align:center;">2</td>
<td style="text-align:center;">4</td>
</tr>
<tr>
<td style="text-align:center;">4</td>
<td style="text-align:center;">16</td>
</tr>
<tr>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
</tr>
</tbody></table></td>
</tr>
</tbody></table>
</div>
</div>
<p>Read more at <a href="functions-piecewise.html">Piecewise Functions</a>.</p>
<h2>Explicit vs Implicit</h2>
<p>One last topic: the terms "explicit" and "implicit".</p>
<p><b>Explicit</b> is when the function shows us how to go directly from x to y, such as:</p>
<div class="center80">
<p class="center larger">y = x<sup>3</sup> 3</p>
<p class="center"><i>When we know x, we can find y</i></p>
</div>
<p>That is the classic <span class="larger">y = f(x)</span> style&nbsp;that we often work with.</p>
<p><b>Implicit</b> is when it is <b>not</b> given directly such as:</p>
<div class="center80">
<p class="center"><span class="larger">x<sup>2</sup> 3xy + y<sup>3 </sup>= 0</span></p>
<p class="center"><i>When we know x, how do we find y?</i></p>
</div>
<p>It may be hard (or impossible!) to go directly from x to y.</p>
<p class="words">"Implicit" comes from "implied", in other words shown <b>indirectly</b>.</p>
<h2>Graphing</h2>
<ul>
<li>The <a href="../data/function-grapher.html">Function Grapher</a> can only handle explicit functions,</li>
<li>The <a href="../data/grapher-equation.html">Equation Grapher</a> can handle both types (but takes a little longer, and sometimes gets it wrong).</li>
</ul>
<h2>Conclusion</h2>
<div class="bigul">
<ul>
<li>a function <b>relates</b> inputs to outputs</li>
<li>a function takes elements from a set (the <b>domain</b>) and relates them to elements in a set (the <b>codomain</b>).</li>
<li>all the outputs (the actual values related to) are together called the <b>range</b></li>
<li>a function is a <b>special</b> type of relation where:
<ul>
<li><b>every element</b> in the domain is included, and</li>
<li>any input produces <b>only one output</b> (not this <b>or</b> that)</li>
</ul></li>
<li>an input and its matching output are together called an <b>ordered pair</b></li>
<li>so a function can also be seen as a <b>set of ordered pairs</b></li>
</ul>
</div>
<p>&nbsp;</p>
<div class="questions">5571, 5572, 535, 5207, 5301, 1173, 7281, 533, 8414, 8430</div>
<div class="related">
<a href="injective-surjective-bijective.html">Injective, Surjective and Bijective</a>
<a href="domain-range-codomain.html">Domain, Range and Codomain</a>
<a href="sets-introduction.html">Introduction to Sets</a>
<a href="index.html">Sets Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/sets/function.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:50 GMT -->
</html>