Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

298 lines
14 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/pythagoras.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:52 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Pythagoras Theorem</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="style4.css" as="style">
<link rel="preload" href="main4.js" as="script">
<link rel="stylesheet" href="style4.css">
<script src="main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="index.html"><img src="images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<center>
<h1>Pythagoras' Theorem</h1>
</center>
<p style="float:left; margin: 10px;"><img src="images/pythagoras.jpg" alt="pythagoras" height="118" width="58"><br>
<span class="tiny"><i>Pythagoras</i></span></p>
<p class="larger">&nbsp;</p>
<p>Over 2000 years ago there was an amazing discovery about triangles:</p>
<p class="large center"><i> When a triangle has a right angle (90°) ...</i></p>
<p class="large center"><i>... and squares are made on each
of the three sides, ...</i></p>
<div class="script" style="height: 330px;">
geometry/images/pyth1.js
</div>
<p><i>... then the biggest square has the <b>exact same area</b> as the other two squares put together!</i></p><br>
<div class="clear"></div>
<p style="float:left; margin: 0 10px 5px 0;"><img src="geometry/images/pythagoras-abc.svg" alt="Pythagoras" height="242" width="221"></p>
<p>It is called "Pythagoras' Theorem" and can be written in one short equation:</p>
<p class="center larger">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></p>
<p class="center"><img src="geometry/images/pythagoras-squares.svg" alt="pythagoras squares a^2 + b^2 = c^2" height="109" width="375"></p>
<p>Note:</p>
<ul>
<li><b>c</b> is the <span class="large"> <b>longest side</b> of the triangle</span></li>
<li><b>a</b> and <b>b</b> are the other two sides</li>
</ul>
<h2>Definition</h2>
<p>The longest side of the triangle is called the "hypotenuse", so the formal definition is:</p>
<div class="def">
<p class="center">In a right angled triangle:<br>
the square of the
hypotenuse is equal to<br>
the sum of the squares of the other two sides.</p>
</div>
<h2>Sure ... ?</h2>
<p>Let's see if it really works using an example.</p>
<div class="example">
<h3>Example: A <a href="geometry/triangle-3-4-5.html">"3, 4, 5" triangle</a> has a right angle in it.</h3>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="geometry/images/triangle-3-4-5-pyth.svg" alt="triangle 3 4 5" height="229" width="209"></td>
<td><br>
<p>Let's check if the areas <b>are</b> the same:</p>
<p class="center larger">3<sup>2</sup> + 4<sup>2</sup> = 5<sup>2</sup></p>
<p>Calculating this becomes:</p>
<p class="center larger">9 + 16 = 25</p>
<p><i>It works ... like Magic!</i></p></td>
</tr>
</tbody></table>
</div>
<p class="center"><img src="geometry/images/triangle-3-4-5-leg.jpg" alt="triangle 3 4 5 lego" height="216" width="200"></p>
<h2>Why Is This Useful?</h2>
<p><span class="large">If we know the lengths of <b>two sides</b> of a right angled triangle, we can find the length of the <b>third side</b>. (But remember it only works on right angled
triangles!)</span></p>
<h2>How Do I Use it?</h2>
<p>Write it down as an equation:</p>
<div class="clear">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="geometry/images/triangle-abc.svg" alt="abc triangle" height="109" width="189"></td>
<td valign="middle">&nbsp;</td>
<td valign="middle"><span class="large">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></td>
</tr>
</tbody></table>
</div>
<div class="center"> </div>
<p><br>
Then we use <a href="algebra/index.html">algebra</a> to find any missing value, as in these examples:</p>
<div class="example">
<h3>Example: Solve this triangle</h3>
<p class="center"><img src="geometry/images/triangle-5-12-c.svg" alt="right angled triangle 5 12 c" height="87" width="176"></p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></div>
<div class="row"><span class="left">Put in what we know:</span><span class="right">5<sup>2</sup> + 12<sup>2</sup> = c<sup>2</sup></span></div>
<div class="row"><span class="left">Calculate squares:</span><span class="right">25 + 144 = c<sup>2</sup></span></div>
<div class="row"><span class="left">25+144=169:</span><span class="right">169 = c<sup>2</sup></span></div>
<div class="row"><span class="left">Swap sides:</span><span class="right">c<sup>2</sup> = 169</span></div>
<div class="row"><span class="left">Square root of both sides:</span><span class="right">c = √169 </span></div>
<div class="row"><span class="left">Calculate:</span><span class="right"><span class="large"><b>c = 13</b> </span></span></div>
</div>
</div>
<p style="float:right; margin: 0 0 5px 30px;"><img src="geometry/images/triangle-build-diag1.svg" alt="Multiples of 3,4,5" height="141" width="307"></p>
<p>Read <a href="builders-math.html">Builder's Mathematics</a> to see practical uses for this.</p>
<p>Also read about <a href="square-root.html">Squares and Square Roots</a> to find out why <span class="larger"></span>169 = 13</p>
<div class="example">
<h3>Example: Solve this triangle.</h3>
<p class="center"><img src="geometry/images/triangle-9-b-15.svg" alt="right angled triangle 9 b 15" height="114" width="142"></p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></div>
<div class="row"><span class="left">Put in what we know:</span><span class="right">9<sup>2</sup> + b<sup>2</sup> = 15<sup>2</sup></span></div>
<div class="row"><span class="left">Calculate squares:</span><span class="right">81 + b<sup>2</sup> = 225 </span></div>
<div class="row"><span class="left">Take 81 from both sides: </span><span class="right">81 81 + b<sup>2</sup> = 225 81</span></div>
<div class="row"><span class="left">Calculate: </span><span class="right">b<sup>2</sup> = 144</span></div>
<div class="row"><span class="left">Square root of both sides:</span><span class="right">b = √144 </span></div>
<div class="row"><span class="left">Calculate:</span><span class="right"><b>b = 12</b> </span></div>
</div>
</div>
<div class="example">
<h3>Example: What is the diagonal distance across a square of size 1?</h3>
<p class="center"><img src="images/unit-square-diagonal.gif" alt="Unit Square Diagonal" height="141" width="128"></p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span></div>
<div class="row"><span class="left">Put in what we know:</span><span class="right">1<sup>2</sup> + 1<sup>2</sup> = c<sup>2</sup></span></div>
<div class="row"><span class="left">Calculate squares:</span><span class="right">1 + 1 = c<sup>2</sup></span></div>
<div class="row"><span class="left">1+1=2: </span><span class="right">2 = c<sup>2</sup></span></div>
<div class="row"><span class="left">Swap sides: </span><span class="right">c<sup>2</sup> = 2</span></div>
<div class="row"><span class="left">Square root of both sides:</span><span class="right"><b>c = √2</b></span></div>
<div class="row"><span class="left">Which is about:</span><span class="right"><b>c = 1.4142...</b></span></div>
</div>
</div><br>
<p>It works the other way around, too: when the three sides of a triangle make <span class="large nobr">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></span>, then the triangle is right angled.</p>
<div class="example">
<h3>Example: Does this triangle have a Right Angle?</h3>
<p class="center"><img src="geometry/images/triangle-10-24-26.svg" alt="10 24 26 triangle" height="157" width="160"></p>
<p>Does<span class="large"> a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> ?</span></p>
<ul>
<li>a<sup>2</sup> + b<sup>2</sup> = 10<sup>2</sup> + 24<sup>2</sup> = 100 + 576 =<b> 676</b></li>
<li>c<sup>2</sup> = 26<sup>2</sup> = <b>676</b></li>
</ul>
<p>They are equal, so ...</p>
<p class="center larger">Yes, it does have a Right Angle!</p>
</div>
<div class="example">
<h3>Example: Does an 8, 15, 16 triangle have a Right Angle?</h3>
<p class="large"><b>Does 8</b><sup>2</sup> + <b>15</b><sup>2</sup> = <b>16</b><sup>2 </sup>?</p>
<ul>
<li>8<sup>2</sup> + 15<sup>2</sup> = 64 + 225 = <b>289</b>,</li>
<li>but 16<sup>2 </sup>= <b>256</b></li>
</ul>
<p class="center larger">So, NO, it does not have a Right Angle</p>
</div>
<div class="example">
<h3>Example: Does this triangle have a Right Angle?</h3>
<p class="center"><img src="geometry/images/triangle-r3-r5-r8.svg" alt="Triangle with roots" height="151" width="103"></p>
<p>Does<span class="large"> a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> ?</span></p>
<div class="so"><span class="large">Does (<b></b>3)<sup>2</sup> + (<b></b>5)<sup>2</sup> = (<b></b>8)<sup>2</sup> ?</span></div>
<div class="so"><span class="large">Does 3 + 5 = 8 ?</span></div>
<p class="center larger">Yes, it does!</p>
<p>So this <b>is</b> a right-angled triangle</p>
</div>
<div class="Clear&quot;"></div>
<h2>And You Can Prove The Theorem Yourself !</h2>
<p>Get paper pen and scissors, then using the following animation as a guide:</p>
<p class="center"><iframe src="https://www.youtube.com/embed/_87RbSoELW8?rel=0&amp;showinfo=0" allowfullscreen="" title="Pythagoras proof" height="203" frameborder="0" width="360"></iframe></p>
<ul>
<li>Draw a right angled triangle on the paper, leaving plenty of space.</li>
<li>Draw a square along the hypotenuse (the longest side)</li>
<li>Draw the same sized square on the other side of the hypotenuse</li>
<li>Draw lines as shown on the animation, like this:</li>
<li><img src="images/pythagoras-cutout.png" alt="cut sqaure" height="101" width="102"></li>
<li>Cut out the shapes</li>
<li>Arrange them so that you can prove that the big square has the same area as the two squares on the other sides</li>
</ul>
<h2>Another, Amazingly Simple, Proof</h2>
<p>Here is one of the oldest proofs that the square on the long side has the same area as the other squares.</p>
<p class="center"><iframe src="https://www.youtube.com/embed/Zb0thZ6_5G8?rel=0&amp;showinfo=0" allowfullscreen="" title="Pythagoras proof" height="203" frameborder="0" width="360"></iframe></p>
<p>Watch the animation, and pay attention when the triangles start sliding around.</p>
<p>You may want to watch the animation a few times to understand what is happening.</p>
<p>The purple triangle is the important one.</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="geometry/images/pythagoras-proof-2a.svg" alt="before" height="153" width="153"></td>
<td>&nbsp;becomes&nbsp;</td>
<td><img src="geometry/images/pythagoras-proof-2b.svg" alt="before" height="153" width="153"></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<p>We also have a <a href="geometry/pythagorean-theorem-proof.html">proof by adding up the areas</a>.</p>
<div class="history">
Historical Note: while we call it Pythagoras' Theorem, it was also known by Indian, Greek, Chinese and Babylonian mathematicians well before he lived.
</div>
<p>&nbsp;</p>
<div class="questions">511,512,617,618, 1145, 1146, 1147, 2359, 2360, 2361</div>
<div class="activity"> <a href="activity/pythagoras-theorem-shoes.html">Activity: Pythagoras' Theorem</a><br>
<a href="activity/walk-in-desert.html">Activity: A Walk in the Desert</a> </div>
<div class="related">
<a href="right_angle_triangle.html">Right Angled Triangles</a>
<a href="activity/fishing-rod.html">The Fishing Rod</a>
<a href="geometry/pythagoras-3d.html">Pythagoras in 3D</a>
<a href="geometry/pythagoras-general.html">Pythagoras Generalizations</a>
<a href="triangle.html">Triangles</a>
<a href="pythagorean_triples.html">Pythagorean Triples</a>
<a href="geometry/pythagorean-theorem-proof.html">Pythagorean Theorem Algebra Proof</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/pythagoras.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:56 GMT -->
</html>