Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

549 lines
20 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/pythagorean-triples.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:05 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Pythagorean Triples - Advanced</title>
<script language="JavaScript" type="text/javascript">Author='Ganesh, Jayaraman';</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Pythagorean Triples - Advanced</h1>
<p class="center">(You may like to read <a href="../pythagoras.html">Pythagoras' Theorem</a><br>
and <a href="../pythagorean_triples.html">Introduction to Pythagorean Triples</a> first)</p>
<p class="center">&nbsp;</p>
<p>A "Pythagorean Triple" is a set of positive <a href="../whole-numbers.html">integers</a> <b>a</b>, <b>b</b> and <b>c</b> that fits the rule:</p>
<p class="largest" align="center">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../geometry/images/pythagoras-abc.svg" alt="Pythagoras a b c triangle" height="242" width="221"></p>
<h2>Triangles</h2>
<p>And when we make a triangle with sides <b>a</b>, <b>b</b> and <b>c</b> it will be a <a href="../right_angle_triangle.html">right angled triangle</a> (see <a href="../pythagoras.html">Pythagoras' Theorem</a> for more details):</p>
<p class="center"><img src="../geometry/images/pythagoras-squares.svg" alt="pythagoras squares: a^2+b^2=c^2" height="109" width="375"></p>
<div style="clear:both"></div>
<p>Note:</p>
<ul>
<li><b>c</b> is the <span class="larger"> <b>longest side</b> of the triangle</span>, called the "hypotenuse"</li>
<li><b>a</b> and <b>b</b> are the other two sides</li>
</ul>
<h2>Pythagorean Triples</h2>
<p>A famous example of a Pythagorean Triples:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:center;"><img src="../geometry/images/triangle-3-4-5.svg" alt="3,4,5 Triangle" height="190" width="226"></td>
</tr>
<tr>
<td style="text-align:center;"><span class="large">The <a href="../geometry/triangle-3-4-5.html">3,4,5 Triangle</a></span></td>
</tr>
<tr>
<td style="text-align:center;">3<sup>2</sup> + 4<sup>2</sup> = 5<sup>2</sup></td>
</tr>
<tr>
<td style="text-align:center;">9 + 16 = 25</td>
</tr>
</tbody></table>
<p>Two more examples:</p>
<table align="center" cellpadding="4">
<tbody>
<tr style="text-align:center;">
<td><img src="../geometry/images/triangle-5-12-13.svg" alt="5,12,13 Triangle" height="87" width="176"></td>
<td style="width:30px;">&nbsp;</td>
<td><img src="../geometry/images/triangle-9-40-41.svg" alt="9,40,41 Triangle" height="75" width="254"></td>
</tr>
<tr style="text-align:center;">
<td><span class="large">5, 12, 13 </span></td>
<td>&nbsp;</td>
<td><span class="large">9, 40, 41 </span></td>
</tr>
<tr style="text-align:center;">
<td>5<sup>2</sup> + 12<sup>2</sup> = 13<sup>2</sup></td>
<td>&nbsp;</td>
<td>9<sup>2</sup> + 40<sup>2</sup> = 41<sup>2</sup></td>
</tr>
<tr style="text-align:center;">
<td>25 + 144 = 169</td>
<td>&nbsp;</td>
<td>(try it yourself)</td>
</tr>
</tbody></table>
<h2>Endless</h2>
<p>The set of Pythagorean Triples is endless.</p>
<p>We can prove this with the help of the first Pythagorean Triple <b>(3, 4, 5)</b>:</p>
<div class="center80">
<p>Let n be any <a href="../whole-numbers.html">integer</a> greater than 1, then 3n, 4n and 5n are also a set of Pythagorean Triple. This is true because:</p>
<p class="center">(3n)<sup>2</sup> + (4n)<sup>2</sup> = (5n)<sup>2</sup></p>
<p>Examples:</p>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th>n</th>
<th width="20">&nbsp;</th>
<th>(3n, 4n, 5n)</th>
</tr>
<tr style="text-align:center;">
<td>2</td>
<td>&nbsp;</td>
<td>(6,8,10)</td>
</tr>
<tr style="text-align:center;">
<td>3</td>
<td>&nbsp;</td>
<td>(9,12,15)</td>
</tr>
<tr style="text-align:center;">
<td>4</td>
<td>&nbsp;</td>
<td>(12,16,20)</td>
</tr>
<tr style="text-align:center;">
<td>...</td>
<td>&nbsp;</td>
<td>... etc ...</td>
</tr>
</tbody></table>
</div>
<p>So we can make <b>infinitely many</b> triples just using the (3,4,5) triple.</p>
</div>
<h2>Primitive Triples
</h2>
<p>In the case above (3,4,5) is a <b>primitive triple</b>, </p>
<p>But all its multiples, such as (6,8,10) etc, are <b>not</b>.</p>
<p>Primitive triples have this property: <b>a, b and c share no common factors</b>.</p>
<div class="example">
<h3>Example: (3,4,5)</h3>
<p>3, 4 and 5 share no common factors, so (3,4,5) <b>is </b>a primitive triple</p> </div>
<div class="example">
<h3>Example: (6,8,10) </h3>
<p>6, 8 and 10 share a common factor of 2, so (6,8,10) is <b>not </b>a primitive triple</p></div>
<h2>Euclid's Proof of Infinitely Many Pythagorean Triples</h2>
<p>But Euclid used a different reasoning to prove the set of Pythagorean Triples is unending.</p>
<p>The proof was based on the fact that the difference of the squares of any two <b>consecutive</b> (one after the other) whole numbers is always an odd number.</p>
<div class="example">
<h3>Examples:</h3>
<ul>
<li>2<sup>2</sup> 1<sup>2</sup> = 4 1 = <b>3</b> (an odd number),</li>
<li>3<sup>2</sup> 2<sup>2</sup> = 9 4 = <b>5</b> (an odd number),</li>
<li>4<sup>2</sup> 3<sup>2</sup> = 16 9 = <b>7</b> (an odd number),</li>
<li>etc
</li></ul></div>
<p>Can you see how subtracting squares make odd numbers in this picture?</p>
<p class="center"><img src="images/odd-square-numbers.gif" alt="odd square numbers" height="130" width="156"><br></p>
<p>See <a href="odd-square-number.html">Squares and Odd Numbers</a>, or have a look at this table as an example:</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th align="center" width="40">n</th>
<th align="center" width="40">n<sup>2</sup></th>
<th align="center" width="130">n<sup>2</sup> minus<br>previous n<sup>2</sup> </th>
</tr>
<tr>
<td style="text-align:center;">1</td>
<td style="text-align:center;">1</td>
<td style="text-align:center;">&nbsp;</td>
</tr>
<tr>
<td style="text-align:center;">2</td>
<td style="text-align:center;">4</td>
<td style="text-align:center;">41 = <b>3</b></td>
</tr>
<tr>
<td style="text-align:center;">3</td>
<td style="text-align:center;">9</td>
<td style="text-align:center;">94 = <b>5</b></td>
</tr>
<tr>
<td style="text-align:center;">4</td>
<td style="text-align:center;">16</td>
<td style="text-align:center;">169 = <b>7</b></td>
</tr>
<tr>
<td style="text-align:center;">5</td>
<td style="text-align:center;">25</td>
<td style="text-align:center;">2516 = <b>9</b></td>
</tr>
<tr>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
</tr>
</tbody></table>
</div>
<p>And there are an infinite number of odd numbers. Since the perfect squares form a subset of the odd numbers, and a fraction of infinity is also infinity, it follows that there must also be an infinite number of odd squares. So there are an infinite number of Pythagorean Triples.</p>
<h2>Properties</h2>
<p>An interesting fact: a Pythagorean Triple always consists of:</p>
<ul>
<li>all even numbers, or</li>
<li>two odd numbers and an even number.</li>
</ul>
<p>A Pythagorean Triple can never be made of all odd numbers or two even numbers and one odd number. This is true because:</p>
<ul>
<li>The square of an odd number is an odd number and the square of an even number is an even number.</li>
<li>The sum of two even numbers is an even number and the sum of an odd number and an even number is in odd number.</li>
</ul>
<p>So, when both a and b are even, c is even too. Similarly when one of a and b is odd and the other is even, c has to be odd!</p>
<h2>Constructing Pythagorean Triples</h2>
<p>It is easy to construct sets of Pythagorean Triples.</p>
<p>When <b>m</b> and <b>n</b> are any two positive integers (m &gt; n):</p>
<ul>
<li>a = m<sup>2</sup> n<sup>2</sup></li>
<li>b = 2mn</li>
<li>c = m<sup>2</sup> + n<sup>2</sup></li>
</ul>
<p>Then a, b and c form a Pythagorean Triple. This is known as "Euclid's formula".</p>
<div class="example">
<h3>Example: m=2 and n=1</h3>
<ul>
<li>a = 2<sup>2</sup> 1<sup>2</sup> = 4 1 = <b>3</b></li>
<li>b = 2 × 2 × 1 = <b>4</b></li>
<li>c = 2<sup>2</sup> + 1<sup>2</sup> = 4 + 1 = <b>5</b></li>
</ul>
<p>And we get the first Pythagorean Triple <b>(3,4,5)</b>.</p>
</div>
<div class="example">
<p>Similarly, when m=3 and n=2 we get the next Pythagorean Triple <b>(5,12,13)</b>.</p>
</div>
<p>This method creates all primitive triples, but we may need to swap a and b to see:</p>
<div class="example">
<p>Example: when m=4 and n=1 we get <b>(15,8,17)</b>, which is also (8,15,17)</p>
</div>
<p>It also creates some non-primitive triples (that are multiples of primitive triples):</p>
<div class="example">
<p>Example: when m=3 and n=1 we get <b>(8,6,10)</b>, which is also (6,8,10) by swapping.</p>
<p>But (6,8,10) is just (3,4,5) times 2</p>
</div>
<h2>List of the First Few</h2>
<p>Here is a list of all primitive Pythagorean Triples for a, b, and c less than 1000.</p>
<p>The list has only primitive triples, so (3,4,5) is there, but (6,8,10) etc are not</p><br>
<div class="simple">
<table width="100%" border="0">
<tbody>
<tr style="text-align:center;">
<td>(3,4,5)</td>
<td>(5,12,13)</td>
<td>(7,24,25)</td>
<td>(8,15,17)</td>
<td>(9,40,41)</td>
</tr>
<tr style="text-align:center;">
<td>(11,60,61)</td>
<td>(12,35,37)</td>
<td>(13,84,85)</td>
<td>(15,112,113)</td>
<td>(16,63,65)</td>
</tr>
<tr style="text-align:center;">
<td>(17,144,145)</td>
<td>(19,180,181)</td>
<td>(20,21,29)</td>
<td>(20,99,101)</td>
<td>(21,220,221)</td>
</tr>
<tr style="text-align:center;">
<td>(23,264,265)</td>
<td>(24,143,145)</td>
<td>(25,312,313)</td>
<td>(27,364,365)</td>
<td>(28,45,53)</td>
</tr>
<tr style="text-align:center;">
<td>(28,195,197)</td>
<td>(29,420,421)</td>
<td>(31,480,481)</td>
<td>(32,255,257)</td>
<td>(33,56,65)</td>
</tr>
<tr style="text-align:center;">
<td>(33,544,545)</td>
<td>(35,612,613)</td>
<td>(36,77,85)</td>
<td>(36,323,325)</td>
<td>(37,684,685)</td>
</tr>
<tr style="text-align:center;">
<td>(39,80,89)</td>
<td>(39,760,761)</td>
<td>(40,399,401)</td>
<td>(41,840,841)</td>
<td>(43,924,925)</td>
</tr>
<tr style="text-align:center;">
<td>(44,117,125)</td>
<td>(44,483,485)</td>
<td>(48,55,73)</td>
<td>(48,575,577)</td>
<td>(51,140,149)</td>
</tr>
<tr style="text-align:center;">
<td>(52,165,173)</td>
<td>(52,675,677)</td>
<td>(56,783,785)</td>
<td>(57,176,185)</td>
<td>(60,91,109)</td>
</tr>
<tr style="text-align:center;">
<td>(60,221,229)</td>
<td>(60,899,901)</td>
<td>(65,72,97)</td>
<td>(68,285,293)</td>
<td>(69,260,269)</td>
</tr>
<tr style="text-align:center;">
<td>(75,308,317)</td>
<td>(76,357,365)</td>
<td>(84,187,205)</td>
<td>(84,437,445)</td>
<td>(85,132,157)</td>
</tr>
<tr style="text-align:center;">
<td>(87,416,425)</td>
<td>(88,105,137)</td>
<td>(92,525,533)</td>
<td>(93,476,485)</td>
<td>(95,168,193)</td>
</tr>
<tr style="text-align:center;">
<td>(96,247,265)</td>
<td>(100,621,629)</td>
<td>(104,153,185)</td>
<td>(105,208,233)</td>
<td>(105,608,617)</td>
</tr>
<tr style="text-align:center;">
<td>(108,725,733)</td>
<td>(111,680,689)</td>
<td>(115,252,277)</td>
<td>(116,837,845)</td>
<td>(119,120,169)</td>
</tr>
<tr style="text-align:center;">
<td>(120,209,241)</td>
<td>(120,391,409)</td>
<td>(123,836,845)</td>
<td>(124,957,965)</td>
<td>(129,920,929)</td>
</tr>
<tr style="text-align:center;">
<td>(132,475,493)</td>
<td>(133,156,205)</td>
<td>(135,352,377)</td>
<td>(136,273,305)</td>
<td>(140,171,221)</td>
</tr>
<tr style="text-align:center;">
<td>(145,408,433)</td>
<td>(152,345,377)</td>
<td>(155,468,493)</td>
<td>(156,667,685)</td>
<td>(160,231,281)</td>
</tr>
<tr style="text-align:center;">
<td>(161,240,289)</td>
<td>(165,532,557)</td>
<td>(168,425,457)</td>
<td>(168,775,793)</td>
<td>(175,288,337)</td>
</tr>
<tr style="text-align:center;">
<td>(180,299,349)</td>
<td>(184,513,545)</td>
<td>(185,672,697)</td>
<td>(189,340,389)</td>
<td>(195,748,773)</td>
</tr>
<tr style="text-align:center;">
<td>(200,609,641)</td>
<td>(203,396,445)</td>
<td>(204,253,325)</td>
<td>(205,828,853)</td>
<td>(207,224,305)</td>
</tr>
<tr style="text-align:center;">
<td>(215,912,937)</td>
<td>(216,713,745)</td>
<td>(217,456,505)</td>
<td>(220,459,509)</td>
<td>(225,272,353)</td>
</tr>
<tr style="text-align:center;">
<td>(228,325,397)</td>
<td>(231,520,569)</td>
<td>(232,825,857)</td>
<td>(240,551,601)</td>
<td>(248,945,977)</td>
</tr>
<tr style="text-align:center;">
<td>(252,275,373)</td>
<td>(259,660,709)</td>
<td>(260,651,701)</td>
<td>(261,380,461)</td>
<td>(273,736,785)</td>
</tr>
<tr style="text-align:center;">
<td>(276,493,565)</td>
<td>(279,440,521)</td>
<td>(280,351,449)</td>
<td>(280,759,809)</td>
<td>(287,816,865)</td>
</tr>
<tr style="text-align:center;">
<td>(297,304,425)</td>
<td>(300,589,661)</td>
<td>(301,900,949)</td>
<td>(308,435,533)</td>
<td>(315,572,653)</td>
</tr>
<tr style="text-align:center;">
<td>(319,360,481)</td>
<td>(333,644,725)</td>
<td>(336,377,505)</td>
<td>(336,527,625)</td>
<td>(341,420,541)</td>
</tr>
<tr style="text-align:center;">
<td>(348,805,877)</td>
<td>(364,627,725)</td>
<td>(368,465,593)</td>
<td>(369,800,881)</td>
<td>(372,925,997)</td>
</tr>
<tr style="text-align:center;">
<td>(385,552,673)</td>
<td>(387,884,965)</td>
<td>(396,403,565)</td>
<td>(400,561,689)</td>
<td>(407,624,745)</td>
</tr>
<tr style="text-align:center;">
<td>(420,851,949)</td>
<td>(429,460,629)</td>
<td>(429,700,821)</td>
<td>(432,665,793)</td>
<td>(451,780,901)</td>
</tr>
<tr style="text-align:center;">
<td>(455,528,697)</td>
<td>(464,777,905)</td>
<td>(468,595,757)</td>
<td>(473,864,985)</td>
<td>(481,600,769)</td>
</tr>
<tr style="text-align:center;">
<td>(504,703,865)</td>
<td>(533,756,925)</td>
<td>(540,629,829)</td>
<td>(555,572,797)</td>
<td>(580,741,941)</td>
</tr>
<tr style="text-align:center;">
<td>(615,728,953)</td>
<td>(616,663,905)</td>
<td>(696,697,985)</td>
<td><br>
</td>
<td><br>
</td>
</tr>
</tbody></table>
</div><br>
<table width="100%" border="0">
<tbody>
<tr>
<td style="text-align:right;"><img src="../images/ganesh.jpg" alt="by ganesh" height="60" width="250"></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="questions">2245, 2246, 2247, 9039, 9040, 9041, 9042, 9043, 9044, 9045</div>
<div class="related">
<a href="../pythagorean_triples.html">Pythagorean Triples - Basics</a>
<a href="index.html">Numbers Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/pythagorean-triples.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:05 GMT -->
</html>