new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
209 lines
9.8 KiB
HTML
209 lines
9.8 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/geometry/conic-sections.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:57 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Conic Sections</title>
|
||
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Conic Sections</h1>
|
||
|
||
<p class="center"><i>Conic Section: a section (or slice) through a cone</i>.</p>
|
||
<div class="large">
|
||
<div class="center80">Did you know that by taking different slices through a cone you can create a circle, an ellipse, a parabola or a hyperbola?</div>
|
||
</div>
|
||
<p> </p>
|
||
<div class="large" style="text-align:center;">
|
||
<div style="float:left; margin: 0 10px 5px 0;"> <a href="cone.html"><img src="images/conic-solid.jpg" alt="cones" height="200" width="127"><br>
|
||
Cones</a><br>
|
||
</div>
|
||
<div style="float:left; margin: 0 10px 5px 0;"> <a href="circle.html"><img src="images/conic-circle.jpg" alt="conic section circle" height="200" width="150"><br>
|
||
Circle</a><br>
|
||
straight through </div>
|
||
<div style="float:left; margin: 0 10px 5px 0;"> <a href="ellipse.html"><img src="images/conic-ellipse.jpg" alt="conic section ellipse" height="200" width="133"><br>
|
||
Ellipse</a><br>
|
||
slight angle </div>
|
||
<div style="float:left; margin: 0 10px 5px 0;"> <a href="parabola.html"><img src="images/conic-parabola.jpg" alt="conic section parabola" height="200" width="122"><br>
|
||
Parabola</a><br>
|
||
parallel to edge<br>
|
||
of cone </div>
|
||
<div style="float:left; margin: 0 10px 5px 0;"> <a href="hyperbola.html"><img src="images/conic-hyperbola2.jpg" alt="conic section hyperbola" height="200" width="116"><br>
|
||
Hyperbola</a><br>
|
||
steep angle </div>
|
||
<div style="clear:both"></div>
|
||
</div>
|
||
<p class="center larger">So all those curves are related.</p>
|
||
|
||
|
||
<h2>Focus!</h2>
|
||
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/focus-directrix-ratio.svg" alt="focus and directrix" height="248" width="315"></p>
|
||
<p>The curves can also be defined using a straight line (the <b>directrix</b>) and a point (the <b>focus</b>).</p>
|
||
<p>When we measure the distance:</p>
|
||
<ul>
|
||
<li>from the <b>focus</b> to any point on the curve, and</li>
|
||
<li>perpendicularly from the <b>directrix</b> to that point</li>
|
||
</ul>
|
||
<p>the two distances will always have the same ratio.</p>
|
||
<ul>
|
||
<li>For an ellipse, the ratio is less than 1</li>
|
||
<li>For a parabola, the ratio is 1 (so the two distances are <b>equal</b>)</li>
|
||
<li>For a hyperbola, the ratio is greater than 1</li></ul>
|
||
<p>That ratio is called the <a href="eccentricity.html">eccentricity</a>. Play with it here:</p>
|
||
|
||
<div class="script" style="height: 400px;">
|
||
images/eccentricity-graph.js
|
||
</div>
|
||
|
||
|
||
<h2>Eccentricity</h2>
|
||
|
||
<p>We can say that any conic section is:</p>
|
||
<div class="def">
|
||
<p class="center larger">"all points whose distance to the <b>focus</b> is equal<br>
|
||
to
|
||
the <b>eccentricity</b> times the distance to the <b>directrix</b>"</p>
|
||
</div>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/eccentricity.svg" alt="Eccentricity" height="350" width="300"></p>
|
||
<p>For:</p>
|
||
<ul>
|
||
<li>0 < <b>eccentricity</b> < 1 we get an ellipse,</li>
|
||
<li><b>eccentricity</b> = 1 a parabola, and</li>
|
||
<li><b>eccentricity</b> > 1 a hyperbola.</li>
|
||
</ul>
|
||
<p>A circle has an <b>eccentricity of zero</b>, so the eccentricity shows us how "un-circular" the curve is. The bigger the eccentricity, the less curved it is.</p>
|
||
<div style="clear:both"></div>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Orbits have an eccentricity less than 1</h3>
|
||
<p>An eccentricity above 1 is is not really an orbit as it does not loop back, but passes by.</p>
|
||
<p class="center"><img src="images/oumuamua.jpg" alt="oumuamua" height="195" width="360"><br>
|
||
Artist's Impression of <i>'Oumuamua</i><br>
|
||
Credit: ESO/M. Kornmesser</p>
|
||
<p>The interstellar asteroid <i>'Oumuamua</i> has an eccentricity of about <b>1.2</b> in it's path around the Sun, meaning it is not part of our solar system:</p>
|
||
<p class="center"><img src="images/oumuamua-orbit.jpg" alt="oumuamua orbit" height="254" width="360"><br>
|
||
Credit: Wikpedia authors nagualdesign and Tomruen</p>
|
||
<p>The orbit of Earth has an eccentricity of about 0.0167 (nearly a circle)<br>
|
||
The orbit of Mars has an eccentricity of about 0.0934 (a little less circular)</p>
|
||
</div>
|
||
|
||
|
||
<h2>Latus Rectum</h2>
|
||
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/latus-rectum.svg" alt="latus rectum" height="162" width="254"></p>
|
||
<p>The <b>latus rectum</b> (no, it is not a rude word!) runs parallel to the directrix and passes through the focus. Its length:</p>
|
||
<ul>
|
||
<li>In a parabola, is four times the focal length</li>
|
||
<li>In a circle, is the diameter</li>
|
||
<li>In an ellipse, is 2b<sup>2</sup>/a (where a and b are one half of the major and minor diameter).</li>
|
||
</ul>
|
||
<p> </p>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/ellipse-directrix-focus.svg" alt="ellipse directrix, focus and latus rectum" height="176" width="303"></p>
|
||
<p>Here is the <b>major axis</b> and <b>minor axis</b> of an ellipse.</p>
|
||
<p>There is a focus and directrix <b>on each side</b> (ie a pair of them).</p>
|
||
<div style="clear:both"></div>
|
||
|
||
|
||
<h2>Equations</h2>
|
||
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/ellipse-cartesian.svg" alt="ellipse on xy graph" height="223" width="260"></p>
|
||
<p>When placed like this on an x-y graph, the equation for an ellipse is:</p>
|
||
<p class="center large"><span class="intbl"><em>x<sup>2</sup></em><strong>a<sup>2</sup></strong></span> + <span class="intbl"><em>y<sup>2</sup></em><strong>b<sup>2</sup></strong></span> = 1</p>
|
||
<p>The special case of a circle (where radius=a=b) is:</p>
|
||
<p class="center large"><span class="intbl"><em>x<sup>2</sup></em><strong>a<sup>2</sup></strong></span> + <span class="intbl"><em>y<sup>2</sup></em><strong>a<sup>2</sup></strong></span> = 1</p>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/hyperbola6.svg" alt="hyperbola on xy graph" height="220" width="260"></p>
|
||
<p>And for a hyperbola it is:</p>
|
||
<p class="center large"><span class="intbl"><em>x<sup>2</sup></em><strong>a<sup>2</sup></strong></span> − <span class="intbl"><em>y<sup>2</sup></em><strong>b<sup>2</sup></strong></span> = 1</p>
|
||
|
||
<div style="clear:both">
|
||
|
||
</div>
|
||
<h2>General Equation</h2>
|
||
|
||
<p>We can make an equation that covers all these curves.</p>
|
||
<p>Because they are plane curves (even though cut out of the solid) we only have to deal with <a href="../data/cartesian-coordinates.html">Cartesian ("x" and "y") Coordinates</a>.</p>
|
||
<p>But these are not straight lines, so just "x" and "y" will not do ... we need to go to the next level, and have:</p>
|
||
<ul>
|
||
<li><b>x<sup>2</sup></b> and <b>y<sup>2</sup></b>,</li>
|
||
<li>and also <b>x</b> (without y), <b>y</b> (without x),</li>
|
||
<li>x and y together (<b>xy</b>)</li>
|
||
<li>and a constant term.</li>
|
||
</ul>
|
||
<p>There, that should do it!</p>
|
||
<p>Give each one a factor (A,B,C etc) and we get a <b>general equation</b> that covers all conic sections:</p>
|
||
<div class="center large">Ax<sup>2</sup> + Bxy + Cy<sup>2</sup> + Dx + Ey + F = 0</div>
|
||
<!-- Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 -->
|
||
|
||
<p>From that equation we can create equations for the circle, ellipse, parabola and hyperbola.</p>
|
||
<p> </p>
|
||
<div class="questions">9064, 9065, 9066, 9067, 637, 638, 3326, 3327, 3328, 3329</div>
|
||
|
||
<div class="related">
|
||
<a href="index.html">Geometry Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/geometry/conic-sections.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:59 GMT -->
|
||
</html> |