Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

209 lines
9.8 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/geometry/conic-sections.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:57 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Conic Sections</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Conic Sections</h1>
<p class="center"><i>Conic Section: a section (or slice) through a cone</i>.</p>
<div class="large">
<div class="center80">Did you know that by taking different slices through a cone you can create a circle, an ellipse, a parabola or a hyperbola?</div>
</div>
<p>&nbsp;</p>
<div class="large" style="text-align:center;">
<div style="float:left; margin: 0 10px 5px 0;"> <a href="cone.html"><img src="images/conic-solid.jpg" alt="cones" height="200" width="127"><br>
Cones</a><br>
&nbsp; </div>
<div style="float:left; margin: 0 10px 5px 0;"> <a href="circle.html"><img src="images/conic-circle.jpg" alt="conic section circle" height="200" width="150"><br>
Circle</a><br>
straight through </div>
<div style="float:left; margin: 0 10px 5px 0;"> <a href="ellipse.html"><img src="images/conic-ellipse.jpg" alt="conic section ellipse" height="200" width="133"><br>
Ellipse</a><br>
slight angle </div>
<div style="float:left; margin: 0 10px 5px 0;"> <a href="parabola.html"><img src="images/conic-parabola.jpg" alt="conic section parabola" height="200" width="122"><br>
Parabola</a><br>
parallel to edge<br>
of cone </div>
<div style="float:left; margin: 0 10px 5px 0;"> <a href="hyperbola.html"><img src="images/conic-hyperbola2.jpg" alt="conic section hyperbola" height="200" width="116"><br>
Hyperbola</a><br>
steep angle </div>
<div style="clear:both"></div>
</div>
<p class="center larger">So all those curves are related.</p>
<h2>Focus!</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/focus-directrix-ratio.svg" alt="focus and directrix" height="248" width="315"></p>
<p>The&nbsp;curves&nbsp;can also be defined using a straight line (the <b>directrix</b>) and a point (the <b>focus</b>).</p>
<p>When we measure the distance:</p>
<ul>
<li>from the <b>focus</b> to any point on the curve, and</li>
<li>perpendicularly from the <b>directrix</b> to that point</li>
</ul>
<p>the two distances will always have the same ratio.</p>
<ul>
<li>For an ellipse, the ratio is less than 1</li>
<li>For a parabola, the ratio is 1 (so the two distances are <b>equal</b>)</li>
<li>For a hyperbola, the ratio is greater than 1</li></ul>
<p>That ratio is called the <a href="eccentricity.html">eccentricity</a>. Play with it here:</p>
<div class="script" style="height: 400px;">
images/eccentricity-graph.js
</div>
<h2>Eccentricity</h2>
<p>We can say that any conic section is:</p>
<div class="def">
<p class="center larger">"all points whose distance to the <b>focus</b> is equal<br>
to
the <b>eccentricity</b> times the distance to the <b>directrix</b>"</p>
</div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/eccentricity.svg" alt="Eccentricity" height="350" width="300"></p>
<p>For:</p>
<ul>
<li>0&nbsp;&lt;&nbsp;<b>eccentricity</b> &lt; 1 we get an ellipse,</li>
<li><b>eccentricity</b> = 1 a parabola, and</li>
<li><b>eccentricity</b> &gt; 1 a hyperbola.</li>
</ul>
<p>A circle has an <b>eccentricity of zero</b>, so the eccentricity shows us how "un-circular" the curve is. The bigger the eccentricity, the less curved it is.</p>
<div style="clear:both"></div>
<div class="example">
<h3>Example: Orbits have an eccentricity less than 1</h3>
<p>An eccentricity above 1 is is not really an orbit as it does not loop back, but passes by.</p>
<p class="center"><img src="images/oumuamua.jpg" alt="oumuamua" height="195" width="360"><br>
Artist's Impression of <i>'Oumuamua</i><br>
Credit: ESO/M. Kornmesser</p>
<p>The interstellar asteroid <i>'Oumuamua</i> has an eccentricity of about <b>1.2</b> in it's path around the Sun, meaning it is not part of our solar system:</p>
<p class="center"><img src="images/oumuamua-orbit.jpg" alt="oumuamua orbit" height="254" width="360"><br>
Credit: Wikpedia authors nagualdesign and Tomruen</p>
<p>The orbit of Earth has an eccentricity of about 0.0167 (nearly a circle)<br>
The orbit of Mars has an eccentricity of about 0.0934 (a little less circular)</p>
</div>
<h2>Latus Rectum</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/latus-rectum.svg" alt="latus rectum" height="162" width="254"></p>
<p>The <b>latus rectum</b> (no, it is not a rude word!) runs parallel to the directrix and passes through the focus. Its length:</p>
<ul>
<li>In a parabola, is four times the focal length</li>
<li>In a circle, is the diameter</li>
<li>In an ellipse, is 2b<sup>2</sup>/a (where a and b are one half of the major and minor diameter).</li>
</ul>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/ellipse-directrix-focus.svg" alt="ellipse directrix, focus and latus rectum" height="176" width="303"></p>
<p>Here&nbsp;is&nbsp;the&nbsp;<b>major axis</b> and <b>minor axis</b> of an ellipse.</p>
<p>There is a focus and directrix <b>on each side</b> (ie a pair of them).</p>
<div style="clear:both"></div>
<h2>Equations</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/ellipse-cartesian.svg" alt="ellipse on xy graph" height="223" width="260"></p>
<p>When placed like this on an x-y graph, the equation for an ellipse is:</p>
<p class="center large"><span class="intbl"><em>x<sup>2</sup></em><strong>a<sup>2</sup></strong></span> + <span class="intbl"><em>y<sup>2</sup></em><strong>b<sup>2</sup></strong></span> = 1</p>
<p>The special case of a circle (where radius=a=b) is:</p>
<p class="center large"><span class="intbl"><em>x<sup>2</sup></em><strong>a<sup>2</sup></strong></span> + <span class="intbl"><em>y<sup>2</sup></em><strong>a<sup>2</sup></strong></span> = 1</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/hyperbola6.svg" alt="hyperbola on xy graph" height="220" width="260"></p>
<p>And for a hyperbola it is:</p>
<p class="center large"><span class="intbl"><em>x<sup>2</sup></em><strong>a<sup>2</sup></strong></span> <span class="intbl"><em>y<sup>2</sup></em><strong>b<sup>2</sup></strong></span> = 1</p>
<div style="clear:both">
</div>
<h2>General Equation</h2>
<p>We can make an equation that covers all these curves.</p>
<p>Because they are plane curves (even though cut out of the solid) we only have to deal with <a href="../data/cartesian-coordinates.html">Cartesian ("x" and "y") Coordinates</a>.</p>
<p>But these are not straight lines, so just "x" and "y" will not do ... we need to go to the next level, and have:</p>
<ul>
<li><b>x<sup>2</sup></b> and <b>y<sup>2</sup></b>,</li>
<li>and also <b>x</b> (without y), <b>y</b> (without x),</li>
<li>x and y together (<b>xy</b>)</li>
<li>and a constant term.</li>
</ul>
<p>There, that should do it!</p>
<p>Give each one a factor (A,B,C etc) and we get a <b>general equation</b> that covers all conic sections:</p>
<div class="center large">Ax<sup>2</sup> + Bxy + Cy<sup>2</sup> + Dx + Ey + F = 0</div>
<!-- Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 -->
<p>From that equation we can create equations for the circle, ellipse, parabola and hyperbola.</p>
<p>&nbsp;</p>
<div class="questions">9064, 9065, 9066, 9067, 637, 638, 3326, 3327, 3328, 3329</div>
<div class="related">
<a href="index.html">Geometry Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/geometry/conic-sections.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:43:59 GMT -->
</html>