new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
282 lines
12 KiB
HTML
282 lines
12 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/integration-rules.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:52 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Integration Rules</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 class="center">Integration Rules</h1>
|
||
|
||
<h2>Integration</h2>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-area.gif" alt="integral area" height="171" width="195"></p>
|
||
|
||
|
||
<p><a href="integration-introduction.html">Integration</a> can be used to find areas, volumes, central points and many useful things. It is often used to find the <b>area underneath the graph of a function and the x-axis</b>.</p>
|
||
|
||
|
||
<p>The first rule to know is that integrals and <a href="derivatives-introduction.html">derivatives</a> are opposites!</p>
|
||
<p class="center"><img src="images/integral-vs-derivative.svg" alt="integral vs derivative" height="122" width="222"><br>
|
||
Sometimes we can work out an integral,<br>
|
||
because we know a matching derivative.</p>
|
||
<h3>Integration Rules</h3>
|
||
<p>Here are the most useful rules, with <a href="#examples">examples below</a>:</p>
|
||
|
||
<div class="beach">
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<th>Common Functions</th>
|
||
<th align="center" width="130">Function</th>
|
||
<th align="center" width="130">Integral</th>
|
||
</tr>
|
||
<tr>
|
||
<td>Constant</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>a dx</td>
|
||
<td style="text-align:center;">ax + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Variable</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>x dx</td>
|
||
<td style="text-align:center;">x<sup>2</sup>/2 + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Square</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>x<sup>2</sup> dx</td>
|
||
<td style="text-align:center;">x<sup>3</sup>/3 + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Reciprocal</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>(1/x) dx</td>
|
||
<td style="text-align:center;">ln|x| + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Exponential</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>e<sup>x</sup> dx</td>
|
||
<td style="text-align:center;">e<sup>x</sup> + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
<td style="text-align:center;"><span class="int">∫</span>a<sup>x</sup> dx</td>
|
||
<td style="text-align:center;">a<sup>x</sup>/ln(a) + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
<td style="text-align:center;"><span class="int">∫</span>ln(x) dx</td>
|
||
<td style="text-align:center;">x ln(x) − x + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Trigonometry (x in <a href="../geometry/radians.html">radians</a>)</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>cos(x) dx</td>
|
||
<td style="text-align:center;">sin(x) + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
<td style="text-align:center;"><span class="int">∫</span>sin(x) dx</td>
|
||
<td style="text-align:center;">-cos(x) + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
<td style="text-align:center;"><span class="int">∫</span>sec<sup>2</sup>(x) dx</td>
|
||
<td style="text-align:center;">tan(x) + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td> </td>
|
||
<td style="text-align:center;"> </td>
|
||
<td style="text-align:center;"> </td>
|
||
</tr>
|
||
<tr>
|
||
<th>Rules</th>
|
||
<th align="center">Function<br>
|
||
</th>
|
||
<th align="center">Integral<br>
|
||
</th>
|
||
</tr>
|
||
<tr>
|
||
<td>Multiplication by constant</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>cf(x) dx</td>
|
||
<td style="text-align:center;">c<span class="int">∫</span>f(x) dx</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Power Rule (n≠−1)</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>x<sup>n</sup> dx</td>
|
||
<td style="text-align:center;"><span class="intbl"><em>x<sup>n+1</sup></em><strong>n+1</strong></span> + C</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Sum Rule</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>(f + g) dx</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>f dx + <span class="int">∫</span>g dx</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Difference Rule</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>(f - g) dx</td>
|
||
<td style="text-align:center;"><span class="int">∫</span>f dx - <span class="int">∫</span>g dx</td>
|
||
</tr>
|
||
<tr>
|
||
<td>Integration by Parts</td>
|
||
<td colspan="2" align="center">See <a href="integration-by-parts.html">Integration by Parts</a></td>
|
||
</tr>
|
||
<tr>
|
||
<td>Substitution Rule</td>
|
||
<td colspan="2" align="center">See <span class="center"><a href="integration-by-substitution.html">Integration by Substitution</a></span></td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<h2><a name="examples"></a>Examples</h2>
|
||
<div class="example">
|
||
<h3>Example: what is the integral of sin(x) ?</h3>
|
||
<p>From the table above it is listed as being <b>−cos(x) + C</b></p>
|
||
<p>It is written as:</p>
|
||
<p class="center large"><span class="int">∫</span>sin(x) dx = −cos(x) + C</p>
|
||
</div>
|
||
<div class="example">
|
||
<h3>Example: what is the integral of 1/x ?</h3>
|
||
<p>From the table above it is listed as being <b>ln|x| + C</b></p>
|
||
<p>It is written as:</p>
|
||
<p class="center large"><span class="int">∫</span>(1/x) dx = ln|x| + C</p>
|
||
<p>The vertical bars <b>||</b> either side of <b>x</b> mean <a href="../numbers/absolute-value.html">absolute value</a>, because we don't want to give negative values to the <a href="../sets/function-logarithmic.html">natural logarithm</a> function <b>ln</b>.</p>
|
||
</div>
|
||
<h3>Power Rule</h3>
|
||
<div class="example">
|
||
<h3>Example: What is <span class="int">∫</span>x<sup>3</sup> dx ?</h3>
|
||
<p>The question is asking "what is the integral of x<sup>3 </sup>?"</p>
|
||
<p>We can use the Power Rule, where n=3:</p>
|
||
<p class="center large"><span class="int">∫</span>x<sup>n</sup> dx = <span class="intbl"><em>x<sup>n+1</sup></em><strong>n+1</strong></span> + C</p>
|
||
<p class="center large"><span class="int">∫</span>x<sup>3 </sup>dx = <span class="intbl"><em>x<sup>4</sup></em><strong>4</strong></span> + C</p>
|
||
</div>
|
||
<div class="example">
|
||
<h3>Example: What is <span class="int">∫</span>√x dx ?</h3>
|
||
<p>√x is also <b>x<sup>0.5</sup></b></p>
|
||
<p>We can use the Power Rule, where n=0.5:</p>
|
||
<p class="center large"><span class="int">∫</span>x<sup>n</sup> dx = <span class="intbl"><em>x<sup>n+1</sup></em><strong>n+1</strong></span> + C</p>
|
||
<p class="center large"><span class="int">∫</span>x<sup>0.5</sup> dx = <span class="intbl"><em>x<sup>1.5</sup></em><strong>1.5</strong></span> + C</p>
|
||
</div>
|
||
<h3>Multiplication by constant</h3>
|
||
<div class="example">
|
||
<h3>Example: What is <span class="int">∫</span>6x<sup>2</sup> dx ?</h3>
|
||
<p>We can move the 6 outside the integral:</p>
|
||
<p class="center large"><span class="int">∫</span>6x<sup>2</sup> dx = 6<span class="int">∫</span>x<sup>2</sup> dx</p>
|
||
<p>And now use the Power Rule on <span class="center large">x<sup>2</sup></span>:</p>
|
||
<p class="center large">= 6 <span class="intbl"><em>x<sup>3</sup></em><strong>3</strong></span> + C</p>
|
||
<p>Simplify:</p>
|
||
<p class="center large">= 2x<sup>3</sup> + C</p>
|
||
</div>
|
||
<h3>Sum Rule</h3>
|
||
<div class="example">
|
||
<h3>Example: What is <span class="int">∫</span>(cos x + x) dx ?</h3>
|
||
<p>Use the Sum Rule:</p>
|
||
<p class="center large"><span class="int">∫</span>(cos x + x) dx = <span class="int">∫</span>cos x dx + <span class="int">∫</span>x dx</p>
|
||
<p>Work out the integral of each (using table above):</p>
|
||
<p class="center large">= sin x + x<sup>2</sup>/2 + C</p>
|
||
</div>
|
||
<h3>Difference Rule</h3>
|
||
<div class="example">
|
||
<h3>Example: What is <span class="int">∫</span>(e<sup>w</sup> − 3) dw ?</h3>
|
||
<p>Use the Difference Rule:</p>
|
||
<p class="center large"><span class="int">∫</span>(e<sup>w</sup> − 3) dw =<span class="int">∫</span>e<sup>w</sup> dw − <span class="int">∫</span>3 dw</p>
|
||
<p>Then work out the integral of each (using table above):</p>
|
||
<p class="center large">= e<sup>w</sup> − 3w + C</p>
|
||
</div>
|
||
|
||
<h3>Sum, Difference, Constant Multiplication And Power Rules</h3>
|
||
<div class="example">
|
||
<h3>Example: What is <span class="int">∫</span>(8z + 4z<sup>3</sup> − 6z<sup>2</sup>) dz ?</h3>
|
||
<p>Use the Sum and Difference Rule:</p>
|
||
<p class="center large"><span class="int">∫</span>(8z + 4z<sup>3</sup> − 6z<sup>2</sup>) dz =<span class="int">∫</span>8z dz + <span class="int">∫</span>4z<sup>3</sup> dz − <span class="int">∫</span>6z<sup>2</sup> dz</p>
|
||
|
||
<p>Constant Multiplication:</p>
|
||
<p class="center large">= 8<span class="int">∫</span>z dz + 4<span class="int">∫</span>z<sup>3</sup> dz − 6<span class="int">∫</span>z<sup>2</sup> dz</p>
|
||
|
||
<p>Power Rule:</p>
|
||
<p class="center large">= 8z<sup>2</sup>/2 + 4z<sup>4</sup>/4 − 6z<sup>3</sup>/3 + C</p>
|
||
|
||
<p>Simplify:</p>
|
||
<p class="center large">= 4z<sup>2</sup> + z<sup>4</sup> − 2z<sup>3</sup> + C</p>
|
||
|
||
</div>
|
||
<h3>Integration by Parts</h3>
|
||
<p>See <a href="integration-by-parts.html">Integration by Parts</a></p>
|
||
|
||
<h3>Substitution Rule</h3>
|
||
<p>See <span class="center"><a href="integration-by-substitution.html">Integration by Substitution</a></span></p>
|
||
<p> </p>
|
||
<h2>Final Advice</h2>
|
||
<ul>
|
||
<li>Get plenty of practice</li>
|
||
<li>Don't forget the <b>dx</b> (or dz, etc)</li>
|
||
<li>Don't forget the <b>+ C</b></li>
|
||
</ul>
|
||
<p> </p>
|
||
<div class="questions">6834, 6835, 6836, 6837, 6838, 6839, 6840, 6841, 6842, 6843</div>
|
||
|
||
<div class="related">
|
||
<a href="integration-introduction.html">Integration</a>
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/integration-rules.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:52 GMT -->
|
||
</html> |