Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

542 lines
22 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/integration-definite.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:52 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Definite Integrals</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<style>
.intto {text-align:left; width:20px; font: 16px Arial; margin: 0 0 -10px 33px;}
.intsymb {font:italic 40px/45px Arial, Georgia;}
.intfrom {text-align:left; width:20px; overflow:visible; font: 16px Arial; margin: -16px 0 0 28px;}
.inttext {font-size: 17px; display:inline-block; position: relative; margin-left: -10px; margin-right: -12px; transform: translateY(-75%); }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<link rel="stylesheet" href="local.html">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Definite Integrals</h1>
<p class="center">You might like to read <a href="integration-introduction.html">Introduction to Integration</a> first!</p>
<h2>Integration</h2>
<table style="border: 0;">
<tbody>
<tr>
<td>
<p><a href="integration-introduction.html">Integration</a> can be used to find areas, volumes, central points and many useful things. But it is often used to find the <b>area under the graph of a function</b> like this:</p></td>
<td>&nbsp;</td>
<td><span class="center"><img src="images/integral-area.gif" alt="integral area" height="171" width="195"></span></td>
</tr>
<tr>
<td>
<p>The area can be found by adding slices that <b>approach zero in width</b>:</p>
<p>And there are <a href="integration-rules.html">Rules of Integration</a> that help us get the answer.</p></td>
<td>&nbsp;</td>
<td><img src="images/integral-area0.gif" alt="integral area dx" height="171" width="195"></td>
</tr>
</tbody></table>
<h2>Notation</h2>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-notation-1.svg" alt="integral notation" height="121" width="306"></p>
<p>The symbol for "Integral" is a stylish "S" (for "Sum", the idea of summing slices):</p>
<p><br></p>After the Integral Symbol we put the function we want to find the integral of (called the Integrand).
<p>And then finish with <b>dx</b> to mean the slices go in the x direction (and approach zero in width).</p>
<h2>Definite Integral</h2>
<p>A <b>Definite Integral</b> has start and end values: in other words there is an <b>interval</b> [a, b].</p>
<p>a and b (called limits, bounds or boundaries) are put at the bottom and top of the "S", like this:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="images/definite-integral.gif" alt="definite integral" height="210" width="195"></td>
<td style="width:30px;">&nbsp;</td>
<td><img src="images/indefinite-integral.gif" alt="indefinite integral" height="210" width="195"></td>
</tr>
<tr style="text-align:center;">
<td><b>Definite</b> Integral<br>
(from <b>a</b> to <b>b</b>)</td>
<td>&nbsp;</td>
<td><b>Indefinite</b> Integral<br>
(no specific values)</td>
</tr>
</tbody></table>
<p>We find the Definite Integral by calculating the <i>Indefinite</i> Integral at <b>a</b>, and at <b>b</b>, then subtracting:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-1graph.svg" alt="definite integral y=2x from 1 to 2 as graph" height="149" width="107"></p>
<h3>Example: What is
<div class="center" style="font-size:18px;">
<div style="display:inline-block; text-align:center;">
<div class="intto">2</div>
<div class="intsymb"></div>
<div class="intfrom">1</div>
</div>
<div class="inttext">2x dx</div>
</div></h3>
<p>We are being asked<span class="center"> for the <b>Definite Integral</b>, from 1 to 2, of <b>2x</b>&nbsp;dx</span></p>
<p>First we need to find the <i><b>Indefinite</b></i><b> Integral</b>.</p>
<p>Using the <a href="integration-rules.html">Rules of Integration</a> we find that <b><span style="font-size:150%;"></span>2x dx = x<sup>2</sup> + C</b></p>
<p>Now calculate that at 1, and 2:</p>
<ul>
<li>At x=1: <span style="font-size:150%;"></span>2x dx = <b>1<sup>2</sup> + C</b></li>
<li>At x=2: <span style="font-size:150%;"></span>2x dx = <b>2<sup>2</sup> + C</b></li>
</ul>
<p>Subtract:</p>
<div class="so">(2<sup>2</sup> + C) (1<sup>2</sup> + C) </div>
<div class="so">2<sup>2</sup> + C 1<sup>2</sup> C </div>
<div class="so">4 1 + <span class="hilite">C C</span> = 3</div>
<p>And "C" gets cancelled out ... so with <b>Definite Integrals we can ignore C</b>.</p>
<p>Result:</p>
<div class="center">
<div style="display:inline-block; text-align:center;">
<div class="intto">2</div>
<div class="intsymb"></div>
<div class="intfrom">1</div>
</div>
<div class="inttext">2x dx = <b>3</b></div>
</div>
<p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-12.svg" alt="area of y=2x from 1 to 2 equals 3" height="164" width="207"></p>
<p><b>Check</b>: with such a simple shape, let's also try calculating the area by geometry:</p>
<p class="center large">A = <span class="intbl"><em>2+4</em><strong>2</strong></span> × 1 = 3</p>
<p>Yes, it does have an area of 3.</p>
<p>(Yay!)</p>
</div>
<p><b>Notation</b>: It is usual to show the indefinite integral (without the +C) inside square brackets, with the limits <b>a</b> and <b>b</b> after, like this:</p>
<div class="example">
<h3>Example (continued)</h3>
<p>How to show your answer:</p>
<div class="tbl">
<div class="row"><span class="left">
<div style="display:inline-block; text-align:center;">
<div class="intto">2</div>
<div class="intsymb"></div>
<div class="intfrom">1</div>
</div>
<div class="inttext">2x dx</div>
</span><span class="rtlt" style="transform: translateY(-30%);">= <span style="font-size:140%;">[</span> x<sup>2</sup> <span style="font-size:140%;">]</span><div style="display:inline-block; text-align:center;transform: translateY(20%);">
<div style="font-family: 'Times New Roman', Times, serif; ">2</div>
<div style="font-family: 'Times New Roman', Times, serif; ">1</div>
</div></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 2<sup>2</sup> 1<sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= <b>3</b></span></div>
</div>
</div>
<p>&nbsp;</p>
<p>Let's try another example:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-5.svg" alt="definite integral y=cos(x) from 0.5 to 1 graph" height="119" width="147"></p>
<h3>Example:</h3>
<p class="center">The Definite Integral, from 0.5 to 1.0, of <b>cos(x)</b> dx:</p>
<div class="center" style="font-size:18px;">
<div style="display:inline-block; text-align:center;">
<div class="intto">1</div>
<div class="intsymb"></div>
<div class="intfrom">0.5</div>
</div>
<div class="inttext">cos(x) dx</div>
</div>
<p>(Note: x must be in <a href="../geometry/radians.html">radians</a>)</p>
<p>&nbsp;</p>
<p>The <i>Indefinite</i> Integral is: <span style="font-size:150%;"><b></b></span><b>cos(x) dx = sin(x) + C</b></p>
<p>We can ignore C for definite integrals (as we saw above) and we get:</p>
<div class="tbl">
<div class="row"><span class="lt">
<div style="display:inline-block; text-align:center;">
<div class="intto">1</div>
<div class="intsymb"></div>
<div class="intfrom">0.5</div>
</div>
<div class="inttext">cos(x) dx</div></span><span class="rtlt" style="transform: translateY(-30%);">= <span style="font-size:140%;">[</span> sin(x) <span style="font-size:140%;">]</span>
<div style="display:inline-block; text-align:center;transform: translateY(20%);">
<div style="font-family: 'Times New Roman', Times, serif; ">1</div>
<div style="font-family: 'Times New Roman', Times, serif; ">0.5</div>
</div></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt"> = sin(1) sin(0.5)</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt"> = 0.841... 0.479...</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= <b>0.362...</b></span></div>
</div>
</div>
<p>And another example to make an important point:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-9.svg" alt="definite integral y=sin(x) from 0 to 1 graph" height="119" width="147"></p>
<h3>Example:</h3>
<p class="center">The Definite Integral, from 0 to 1, of <b>sin(x)</b> dx:</p>
<div class="center" style="font-size:18px;">
<div style="display:inline-block; text-align:center;">
<div class="intto">1</div>
<div class="intsymb"></div>
<div class="intfrom">0</div>
</div>
<div class="inttext">sin(x) dx</div>
</div>
<p>The <i>Indefinite</i> Integral is: <span style="font-size:150%;"><b></b></span><b>sin(x) dx = cos(x) + C</b></p>
<p>Since we are going from 0, <b>can we</b> just calculate the integral at x=1 ??</p>
<p class="center">cos(1) = 0.540...</p>
<p>What? It is <b>negative</b>? But it looks positive in the graph.</p>
<p>Well ... we made a <b>mistake</b>!</p>
<p>Because <b>we need to subtract the integral at x=0</b>. We shouldn't assume it is zero.</p>
<p>&nbsp;</p>
<p>So let us do it properly, subtracting one from the other:</p>
<div class="tbl">
<div class="row"><span class="left">
<div style="display:inline-block; text-align:center;">
<div class="intto">1</div>
<div class="intsymb"></div>
<div class="intfrom">0</div>
</div>
<div class="inttext">sin(x) dx</div>
</span><span class="rtlt" style="transform: translateY(-30%);">= <span style="font-size:140%;">[</span> cos(x) <span style="font-size:140%;">]</span><div style="display:inline-block; text-align:center;transform: translateY(20%);">
<div style="font-family: 'Times New Roman', Times, serif; ">1</div>
<div style="font-family: 'Times New Roman', Times, serif; ">0</div>
</div></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= cos(1) (cos(0))</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 0.540... (1)</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= <b>0.460...</b> </span></div>
</div>
<p>That's better!</p>
</div>
<p>But we <i><b>can</b></i><b> have negative regions</b>, when the curve is below the axis:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-cos-1-3.svg" alt="definite integral y=cos(x) from 1 to 3 " height="127" width="212"></p>
<h3>Example:</h3>
<p class="center">The Definite Integral, from 1 to 3, of <b>cos(x)</b> dx:</p>
<div class="center" style="font-size:18px;">
<div style="display:inline-block; text-align:center;">
<div class="intto">3</div>
<div class="intsymb"></div>
<div class="intfrom">1</div>
</div>
<div class="inttext">cos(x) dx</div>
</div>
<p class="center">Notice that some of it is positive, and some negative.<br>
The definite integral will work out the <b>net</b> value.</p>
<p>&nbsp;</p>
<p>Let us do the calculations:</p>
<div class="tbl">
<div class="row"><span class="left">
<div style="display:inline-block; text-align:center;">
<div class="intto">3</div>
<div class="intsymb"></div>
<div class="intfrom">1</div>
</div>
<div class="inttext">cos(x) dx</div>
</span>
<span class="rtlt" style="transform: translateY(-30%);">= <span style="font-size:140%;">[</span> sin(x) <span style="font-size:140%;">]</span><div style="display:inline-block; text-align:center;transform: translateY(20%);">
<div style="font-family: 'Times New Roman', Times, serif; ">3</div>
<div style="font-family: 'Times New Roman', Times, serif; ">1</div>
</div></span>
</div>
<div class="row"><span class="left">
&nbsp;
</span> <span class="rtlt" style="vertical-align:middle;">= sin(3) sin(1) </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 0.141... 0.841...</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= <b>0.700...</b></span><span class="rtlt"></span></div>
</div>
<p>So there is more negative than positive with a net result of 0.700....</p>
</div>
So we have this important thing to remember:
<div class="def center">
<div style="display:inline-block; text-align:center;">
<div class="intto">b</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">f(x) dx&nbsp; = &nbsp;(Area above x axis) (Area below x axis)</div>
</div>
<p>&nbsp;</p>
<p>Try integrating cos(x) with different start and end values to see for yourself how positives and negatives work.</p>
<h2>Positive Area</h2>
<p>But sometimes we want all area treated as <b>positive</b> (without the part below the axis being subtracted).</p>
<p>In that case we must calculate the areas <b>separately</b>, like in this example:</p>
<div class="example">
<span style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-cos-1-3p.svg" alt="area y=cos(x) from 1 to 3 positive both above and below" height="127" width="212"></span>
<h3>Example: What is the <b>total area</b> between y = cos(x) and the x-axis, from x = 1 to x = 3?</h3>
<p>This is like the example we just did, but now we expect that <b>it is all positive</b> (imagine we had to paint it).</p>
<p>So now we have to do the parts separately:</p>
<ul>
<li>One for the area above the x-axis</li>
<li>One for the area below the x-axis</li>
</ul>
<p>The curve crosses the x-axis at x = <span class="times">π</span>/2 so we have:</p>
<p>From 1 to <span class="times">π</span>/2:</p>
<div class="tbl">
<div class="row"><span class="left">
<div style="display:inline-block; text-align:center;">
<div class="intto"><span class="times">π</span>/2</div>
<div class="intsymb"></div>
<div class="intfrom">1</div>
</div>
<div class="inttext">cos(x) dx</div>
</span> <span class="rtlt" style="vertical-align:middle;">= sin(<span class="times">π</span>/2) sin(1) </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 1 0.841...</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= <b>0.158...</b></span></div>
</div>
<p>From <span class="times">π</span>/2 to 3:</p>
<div class="tbl">
<div class="row"><span class="left">
<div style="display:inline-block; text-align:center;">
<div class="intto">3</div>
<div class="intsymb"></div>
<div class="intfrom"><span class="times">π</span>/2</div>
</div>
<div class="inttext">cos(x) dx</div>
</span> <span class="rtlt" style="vertical-align:middle;">= sin(3) sin(<span class="times">π</span>/2) </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= 0.141... 1</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="rtlt">= <b>0.859...</b></span></div>
</div>
<div class="center">
<div style="display:inline-block; text-align:center;">
<div style="font-family: 'Times New Roman', Times, serif; "></div>
</div>
</div>
<p>That last one comes out negative, but we want it to be positive, so:</p>
<p class="center larger">Total area = 0.158... <span class="hilite">+</span> 0.859... = <b>1.017</b>...</p>
<p>This is very different from the answer in the previous example.</p>
</div>
<h2>Continuous</h2>
<p>Oh yes, the function we are integrating must be <a href="continuity.html">Continuous</a> between <b>a</b> and <b>b</b>: no holes, jumps or vertical asymptotes (where the function heads up/down towards infinity).</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/continuous-asymp-no.gif" alt="not continuous asymptote" height="109" width="147"></p>
<h3>Example:</h3>
<p>A vertical asymptote between <b>a</b> and <b>b</b> affects the definite integral.</p>
<div style="clear:both"></div>
</div>
<h2>Properties</h2>
<h3>Area above area below</h3>
<p>The integral adds the area above the axis but subtracts the area below, for a "net value":</p>
<div class="center">
<div style="display:inline-block; text-align:center;">
<div class="intto">b</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">f(x) dx&nbsp; = &nbsp;(Area above x axis) (Area below x axis)</div>
</div>
<p>&nbsp;</p>
<h3>Adding Functions</h3>
<p>The integral of <b>f+g</b> equals the integral of <b>f</b> plus the integral of <b>g</b>:</p>
<div class="center">
<div style="display:inline-block; text-align:center;">
<div class="intto">b</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">f(x) + g(x) dx&nbsp; = </div>
<div style="display:inline-block; text-align:center;">
<div class="intto">b</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">f(x) dx&nbsp; + </div>
<div style="display:inline-block; text-align:center;">
<div class="intto">b</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">g(x) dx &nbsp;</div>
</div>
<p>&nbsp;</p>
<h3>Reversing the interval</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-propneg.svg" alt="definite integral negative property" height="94" width="142"></p>
<p>Reversing the direction of the interval gives the negative of the original direction.</p>
<div class="center">
<div style="display:inline-block; text-align:center;">
<div class="intto">b</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">f(x) dx&nbsp; = &nbsp;</div>
<div style="display:inline-block; text-align:center;">
<div class="intto">a</div>
<div class="intsymb"></div>
<div class="intfrom">b</div>
</div>
<div class="inttext">f(x) dx</div>
</div>
<p>&nbsp;</p>
<h3>Interval of zero length</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-prop0.svg" alt="definite integral area zero" height="94" width="142"></p>
<p>When the interval starts and ends at the same place, the result is zero:</p>
<div class="center">
<div style="display:inline-block; text-align:center;">
<div class="intto">a</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">f(x) dx&nbsp; =&nbsp; 0</div></div>
<h3>Adding intervals</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/integral-def-prop-add.svg" alt="area a to b = a to c plus c to b" height="94" width="142"></p>
<p>We can also add two adjacent intervals together:</p>
<div class="center">
<div style="display:inline-block; text-align:center;">
<div class="intto">b</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">f(x) dx&nbsp; = </div>
<div style="display:inline-block; text-align:center;">
<div class="intto">c</div>
<div class="intsymb"></div>
<div class="intfrom">a</div>
</div>
<div class="inttext">f(x) dx&nbsp; + </div>
<div style="display:inline-block; text-align:center;">
<div class="intto">b</div>
<div class="intsymb"></div>
<div class="intfrom">c</div>
</div>
<div class="inttext">f(x) dx &nbsp;</div>
</div>
<h2>Summary</h2>
<p>The Definite Integral between <b>a</b> and <b>b</b> is the Indefinite Integral at <b>b</b> minus the Indefinite Integral at<b> a</b>.</p>
<p>&nbsp;</p>
<div class="questions">6864, 6865, 6866, 6867, 6868, 6869, 6870, 6871, 6872, 6873, 6874</div>
<div class="related">
<a href="integration-introduction.html">Introduction to Integration</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/integration-definite.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:38:54 GMT -->
</html>