lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/trigonometric-identities.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

301 lines
14 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/trigonometric-identities.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:00 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Trigonometric Identities</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center"> Trigonometric Identities<br />
</h1>
<h3 align="center">You might like to read about <a href="trigonometry.html">Trigonometry</a> first!</h3>
<h2>Right Triangle</h2>
<p>The <b>Trigonometric Identities</b> are equations that are true for <a href="../right_angle_triangle.html">Right Angled Triangles</a>. <i>(If it is not a Right Angled Triangle go to the <a href="triangle-identities.html">Triangle Identities</a> page.)</i></p>
<p>Each side of a <b>right triangle</b> has a name:<br />
</p>
<p class="center"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" /><br />
</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/adjacent-opposite-hypotenuse-rot.svg" alt="examples of Opposite, Adjacent and Hypotenuse" /></p>
<p><b>Adjacent</b> is always next to the angle</p>
<p>And <b>Opposite</b> is opposite the angle</p>
</div>
<div class="def">
<p>We are soon going to be playing with all sorts of functions, but remember it all comes back to that simple triangle with:</p>
<ul>
<li>Angle <b>&theta;</b></li>
<li>Hypotenuse</li>
<li>Adjacent</li>
<li>Opposite</li>
</ul>
</div>
<h2>Sine, Cosine and Tangent</h2>
<p>The three main functions in trigonometry are <a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a>. </p>
<p align="center">They are just the <b>length of one side
divided by another</b></p>
<p> For a right triangle with an angle <b><i>&theta;</i></b> :</p>
<p class="center"><img src="images/sin-cos-tan.svg" alt="sin=opposite/hypotenuse cos=adjacent/hypotenuse tan=opposite/adjacent" style="max-width:100%" /></p>
<table border="0" align="center" cellpadding="5">
<tr>
<td><div align="right">Sine Function:</div></td>
<td nowrap><b>sin(<i>&theta;</i>) = Opposite / Hypotenuse</b></td>
</tr>
<tr>
<td><div align="right">Cosine Function:</div></td>
<td nowrap><b>cos(<i>&theta;</i>) = Adjacent / Hypotenuse</b></td>
</tr>
<tr>
<td><div align="right">Tangent Function:</div></td>
<td nowrap><b>tan(<i>&theta;</i>) = Opposite / Adjacent</b></td>
</tr>
</table>
<p class="center">For a given angle <b><i>&theta;</i></b> each ratio stays the same <br>
no matter how big or small the triangle is</p>
<p>&nbsp;</p>
<p>When we divide Sine by Cosine we get:</p>
<p class="center larger"><span class="intbl"><em>sin(&theta;)</em><strong>cos(&theta;)</strong></span> = <span class="intbl"><em>Opposite/Hypotenuse</em><strong>Adjacent/Hypotenuse</strong></span> = <span class="intbl"><em>Opposite</em><strong>Adjacent</strong></span> = tan(&theta;) </p>
<p>So we can say:</p>
<div class="def"><p class="center large">tan(&theta;) = <span class="intbl"><em>sin(&theta;)</em><strong>cos(&theta;)</strong></span></p>
</div>
<p>That is our first <b>Trigonometric Identity</b>.</p>
<h2>Cosecant, Secant and Cotangent</h2>
<p>We can also divide &quot;the other way around&quot; (such as <b>Adjacent/Opposite</b> instead of <b>Opposite/Adjacent</b>):</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/adjacent-opposite-hypotenuse.svg" alt="triangle showing Opposite, Adjacent and Hypotenuse" /></p>
<table border="0" align="center" cellpadding="5">
<tr>
<td><div align="right">Cosecant Function:</div></td>
<td nowrap><b>csc(<i>&theta;</i>) = Hypotenuse / Opposite</b></td>
</tr>
<tr>
<td><div align="right">Secant Function:</div></td>
<td nowrap><b>sec(<i>&theta;</i>) = Hypotenuse / Adjacent</b></td>
</tr>
<tr>
<td><div align="right">Cotangent Function:</div></td>
<td nowrap><b>cot(<i>&theta;</i>) = Adjacent / Opposite</b></td>
</tr>
</table>
<p>&nbsp;</p>
<div class="example">
<h3>Example: when Opposite = 2 and Hypotenuse = 4 then</h3>
<p align="center"> <b>sin(&theta;) = 2/4</b>, and <b>csc(&theta;) = 4/2</b></p>
</div>
<p>Because of all that we can say:</p>
<div class="def">
<p class="center large">sin(&theta;) = 1/csc(&theta;)</p>
<p class="center large">cos(&theta;) = 1/sec(&theta;)</p>
<p class="center large"> tan(&theta;) = 1/cot(&theta;)<b></b><br>
</p>
</div>
<p>And the other way around:</p>
<div class="def">
<p class="center large">csc(&theta;) = 1/sin(&theta;)</p>
<p class="center large">sec(&theta;) = 1/cos(&theta;)</p>
<p class="center large"> cot(&theta;) = 1/tan(&theta;)<br>
</p>
</div>
<p>And we also have:</p>
<div class="def">
<p class="center large">cot(&theta;) = cos(&theta;)/sin(&theta;)<br>
</p>
</div>
<h2>Pythagoras Theorem</h2>
<p>For the next trigonometric identities we start with <a href="../pythagoras.html">Pythagoras' Theorem</a>: </p>
<table border="0">
<tr>
<td><img src="../geometry/images/triangle-abc.svg" alt="right angled triangle abc" /></td>
<td><p>The Pythagorean Theorem says that, <i>in a right triangle,</i> the square of a plus the square of b is equal to the square of c:</p>
<p align="center" class="large">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></p></td>
</tr>
</table>
<p>Dividing through by <i>c</i><sup>2</sup> gives</p>
<p class="center large"><span class="intbl">
<em>a<sup>2</sup></em>
<strong>c<sup>2</sup></strong>
</span> + <span class="intbl">
<em>b<sup>2</sup></em>
<strong>c<sup>2</sup></strong>
</span> = <span class="intbl">
<em>c<sup>2</sup></em>
<strong>c<sup>2</sup></strong>
</span></p>
<p>This can be simplified to:</p>
<p class="center"><span class="large" style="font-size: 150%">(</span><span class="intbl" style="transform: translateY(-10%);">
<em>a</em>
<strong>c</strong>
</span><span class="large" style="font-size: 150%">)<sup>2</sup></span> + <span class="large" style="font-size: 150%">(</span><span class="intbl" style="transform: translateY(-10%);">
<em>b</em>
<strong>c</strong>
</span><span class="large" style="font-size: 150%">)<sup>2</sup> = 1</span> </p>
<p>Now, <b>a/c</b> is <b>Opposite / Hypotenuse</b>, which is <b>sin(&theta;)</b></p>
<p>And <b>b/c</b> is <b>Adjacent / Hypotenuse</b>, which is <b>cos(&theta;)</b></p>
<p>So (a/c)<sup>2</sup> + (b/c)<sup>2</sup> = 1 can also be written:</p>
<div class="def">
<p class="center large">sin<sup>2</sup> &theta; + cos<sup>2</sup> &theta; = 1 </p>
</div>
<div class="def"> Note:
<ul>
<li><b>sin<sup>2</sup> &theta;</b> means to find the sine of &theta;, <b>then</b> square the result, and</li>
<li><b>sin &theta;<sup>2</sup></b> means to square &theta;, <b>then</b> do the sine function</li>
</ul>
</div>
<br />
<div class="example">
<h3>Example: 32&deg;</h3>
<p>Using <b>4 decimal places only</b>:</p>
<ul>
<li>sin(32&deg;) = 0.5299...</li>
<li>cos(32&deg;) = 0.8480...</li>
</ul>
<p>Now let's calculate <b>sin<sup>2 </sup>&theta; + cos<sup>2</sup> &theta;</b>:</p>
<p align="center">0.5299<sup>2</sup> + 0.8480<sup>2</sup> <br>
= 0.2808... + 0.7191... <br>
= <b>0.9999...</b></p>
<p>We get very close to 1 using only 4 decimal places. Try it on <i>your</i> calculator, you might get better results!</p>
</div>
<p>Related identities include:</p>
<div class="def">
<p class="larger center">sin<sup>2</sup> &theta; = 1 cos<sup>2</sup> &theta;<br>
cos<sup>2</sup> &theta; = 1 sin<sup>2</sup> &theta;<br>
tan<sup>2</sup> &theta; + 1 = sec<sup>2</sup> &theta;<br>
tan<sup>2</sup> &theta; = sec<sup>2</sup> &theta; 1<br>
cot<sup>2</sup> &theta; + 1 = csc<sup>2</sup> &theta;<br>
cot<sup>2</sup> &theta; = csc<sup>2</sup> &theta; 1</p>
</div>
<table border="0" align="center">
<tr>
<td><h2>How Do You Remember Them? </h2>
<p>The identities mentioned so far can be remembered <br />
using one clever diagram called the <a href="trig-magic-hexagon.html">Magic Hexagon</a>:</p>
<p>&nbsp;</p></td>
<td>&nbsp;</td>
<td><a href="trig-magic-hexagon.html"><img src="images/magic-hexagon-1.gif" width="173" height="132" alt="magic hexagon" /></a></td>
</tr>
</table>
<h2>But Wait ... There is More!</h2>
<p>There are many more identities ... here are some of the more useful ones:</p>
<h3>Opposite Angle Identities</h3>
<div class="def">
<p class="larger center">sin(&minus;&theta;) = &minus;sin(&theta;)</p>
<p class="larger center">cos(&minus;&theta;) = cos(&theta;)</p>
<p class="larger center">tan(&minus;&theta;) = &minus;tan(&theta;)</p>
</div>
<h3> Double Angle Identities </h3>
<table border="0" align="center">
<tr>
<td><img src="images/trig-sin2theta.gif" alt="sin 2a" width="165" height="71" /></td>
</tr>
<tr>
<td>&nbsp;</td>
</tr>
<tr>
<td><img src="images/trig-cos2a.gif" alt="cos 2a" width="190" height="134" /></td>
</tr>
<tr>
<td>&nbsp;</td>
</tr>
<tr>
<td><img src="images/trig-tan2a.gif" alt="tan 2a" width="163" height="42" /></td>
</tr>
</table>
<p>&nbsp;</p>
<h3> Half Angle Identities </h3>
<p>Note that &quot;<span class="large">&plusmn;</span>&quot; means it may be <b>either one</b>, depending on the value of <i>&theta;/2</i></p>
<table border="0" align="center">
<tr>
<td><img src="images/trig-sin-half.gif" alt="sin a/2" width="180" height="51" /></td>
</tr>
<tr>
<td>&nbsp;</td>
</tr>
<tr>
<td><img src="images/trig-cos-half.gif" alt="cos a/2" width="182" height="51" /></td>
</tr>
<tr>
<td>&nbsp;</td>
</tr>
<tr>
<td><img src="images/trig-tan-half.gif" alt="tan a/2" style="max-width:100%" /></td>
</tr>
<tr>
<td>&nbsp;</td>
</tr>
<tr>
<td><img src="images/trig-cot-half.gif" alt="cot a/2" style="max-width:100%" /></td>
</tr>
</table>
<br />
<h3>Angle Sum and Difference Identities </h3>
<p>Note that <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> means you can use plus or minus, and the <img src="../images/symbols/minus-plus.svg" alt="minus/plus"> means to use the opposite sign.</p>
<p class="center">sin(A <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> B) = sin(A)cos(B) <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> cos(A)sin(B)</p>
<p class="center">cos(A <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> B) = cos(A)cos(B) <img src="../images/symbols/minus-plus.svg" alt="minus/plus"> sin(A)sin(B)</p>
<p class="center">tan(A <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> B) = <span class="intbl"><em>tan(A) <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> tan(B)</em><strong>1 <img src="../images/symbols/minus-plus.svg" alt="minus/plus"> tan(A)tan(B)</strong></p>
<p class="center">cot(A <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> B) = <span class="intbl"><em>cot(A)cot(B) <img src="../images/symbols/minus-plus.svg" alt="minus/plus"> 1</em><strong>cot(B) <img src="../images/symbols/plus-minus.svg" alt="plus/minus"> cot(A)</strong></p>
<h2> Triangle Identities </h2>
<p>There are also <a href="triangle-identities.html">Triangle Identities</a> which apply to all triangles (not just Right Angled Triangles)</p>
<p>&nbsp;</p>
<div class="questions">
<script type="text/javascript">getQ(741, 1554, 742, 1555, 743, 1556, 744, 3969, 1557, 3970);</script>&nbsp; </div>
<div class="related"> <a href="../sine-cosine-tangent.html">Sine, Cosine and Tangent</a> <a href="../geometry/unit-circle.html">Unit Circle</a> </div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/trigonometric-identities.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:02 GMT -->
</html>