Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

325 lines
16 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/circle-equations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:15 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Circle Equations</title>
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"]];</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Circle Equations</h1>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../geometry/images/circle.svg" alt="circle" height="225" width="212"></p>
<p>A <a href="../geometry/circle.html">circle</a> is easy to make:</p>
<p class="center larger"><i>Draw a curve that is "radius" away<br>
from a central point.</i></p>
<p>And so:</p>
<p class="center large">All points are the same distance<br>
from the center.</p>
<div style="clear:both"></div>
<p>&nbsp;</p>
<p>In fact <b>the definition</b> of a circle is</p>
<div class="def">
<p><b>Circle:</b> The <a href="../sets/set-of-points.html">set of all points</a> on a plane that are a fixed distance from a center.</p>
</div>
<h2>Circle on a Graph</h2>
<p>Let us put a circle of radius 5 on a graph:</p>
<p class="center"><img src="images/graph-circle-5.svg" alt="graph circle" height="224" width="259"></p>
<p>Now let's work out <b>exactly</b> where all the points are.</p>
<p>We make a right-angled triangle:</p>
<p class="center"><img src="images/graph-circle-5a.svg" alt="graph circle" height="224" width="259"></p>
<p>And then use <a href="../pythagoras.html">Pythagoras</a>:</p>
<p class="center large" style="display: block;">x<sup>2</sup> + y<sup>2</sup> = 5<sup>2</sup></p>
<p class="larger">There are an <a href="../numbers/infinity.html">infinite</a> number of those points, here are some examples:</p>
<p class="center"><img src="images/graph-circle-5b.svg" alt="graph circle" height="224" width="259"></p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th align="center">x</th>
<th align="center">y</th>
<th align="right">x<sup>2</sup> + y<sup>2</sup></th>
</tr>
<tr>
<td style="text-align:center; width:30px;">5</td>
<td style="text-align:center; width:30px;">0</td>
<td style="text-align:right;">5<sup>2</sup> + 0<sup>2</sup> = 25 + 0 = 25</td>
</tr>
<tr>
<td style="text-align:center;">3</td>
<td style="text-align:center;">4</td>
<td style="text-align:right;">3<sup>2</sup> + 4<sup>2</sup> = 9 + 16 = 25</td>
</tr>
<tr>
<td style="text-align:center;">0</td>
<td style="text-align:center;">5</td>
<td style="text-align:right;">0<sup>2</sup> + 5<sup>2</sup> = 0 + 25 = 25</td>
</tr>
<tr>
<td style="text-align:center;">4</td>
<td style="text-align:center;">3</td>
<td style="text-align:right;">(4)<sup>2</sup> + (3)<sup>2</sup> = 16 + 9 = 25</td>
</tr>
<tr>
<td style="text-align:center;">0</td>
<td style="text-align:center;">5</td>
<td style="text-align:right;">0<sup>2</sup> + (5)<sup>2</sup> = 0 + 25 = 25</td>
</tr>
</tbody></table>
</div>
<p class="larger">In all cases a point on the circle follows the rule x<sup>2</sup> + y<sup>2</sup> = radius<sup>2</sup></p>
<p>We can use that idea to find a missing value</p>
<div class="example">
<h3>Example: <b>x</b> value of 2, and a <b>radius</b> of 5</h3>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">x<sup>2</sup> + y<sup>2</sup> = r<sup>2</sup></span></div>
<div class="row"><span class="left">Values we know:</span><span class="right">2<sup>2</sup> + y<sup>2</sup> = 5<sup>2</sup></span></div>
<div class="row"><span class="left">Rearrange:</span><span class="right"> y<sup>2</sup> = 5<sup>2</sup> 2<sup>2</sup></span></div>
<div class="row"><span class="left">Square root both sides:</span><span class="right"> y = ±√(5<sup>2</sup> 2<sup>2</sup>)</span></div>
<div class="row"><span class="left">Solve:</span><span class="right">y = ±√21</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">y ≈ <b>±4.58...</b></span></div>
</div>
<p><i>(The <b>±</b> means there are two possible values: one&nbsp;with <b>+</b> the other with <b></b>)</i></p>
<p>And here are the two points:</p>
<p class="center"><img src="images/graph-circle-5c.svg" alt="graph circle" height="224" width="259"></p>
</div>
<h2>More General Case</h2>
<p>Now let us put the center at <b>(a,b)</b></p>
<p class="center"><img src="images/graph-circle-a.svg" alt="graph circle" height="224" width="259"></p>
<p>So the circle is <b>all the points (x,y)</b> that are <b>"r"</b> away from the center <b>(a,b)</b>.</p>
<div style="clear:both"></div>
<p>Now lets work out where the points are (using a right-angled triangle and <a href="../pythagoras.html">Pythagoras</a>):</p>
<p class="center"><img src="images/graph-circle-b.svg" alt="graph circle" height="224" width="259"></p>
<p>It is the same idea as before, but we need to subtract <b>a</b> and <b>b</b>:</p>
<div class="def">
<p class="center large" style="display: block;">(xa)<sup>2</sup> + (yb)<sup>2</sup> = r<sup>2</sup></p>
</div>
<p class="center larger">And that is the <b>"Standard Form"</b> for the equation of a circle!</p>
<p>&nbsp;</p>
<p>It shows all the important information at a glance: the center <b>(a,b)</b> and the radius <b>r</b>.</p>
<div class="example">
<h3>Example: A circle with center at (3,4) and a radius of 6:</h3>
<p>Start with:</p>
<p><span class="center large" style="display: block;">(xa)<sup>2</sup> + (yb)<sup>2</sup> = r<sup>2</sup></span></p>
<p>Put in (a,b) and r:</p>
<p><span class="center large" style="display: block;">(x3)<sup>2</sup> + (y4)<sup>2</sup> = 6<sup>2</sup></span></p>
<p>We can then use our algebra skills to simplify and rearrange that equation, depending on what we need it for.</p>
</div>
<h2>Try it Yourself</h2>
<div class="script" style="height: 360px;">
images/circle-equn.js
</div>
<h2>"General Form"</h2>
<p>But you may see a circle equation and <b>not know it</b>!</p>
<p class="center larger">Because it may not be in the neat "Standard Form" above.</p>
<p>As an example, let us put some values to a, b and r and then expand it</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">(xa)<sup>2</sup> + (yb)<sup>2</sup> = r<sup>2</sup></span></div>
<div class="row"><span class="left">Example: a=1, b=2, r=3:</span><span class="right">(x1)<sup>2</sup> + (y2)<sup>2</sup> = 3<sup>2</sup></span></div>
<div class="row"><span class="left">Expand: </span><span class="right">x<sup>2</sup> 2x + 1 + y<sup>2</sup> 4y + 4 = 9</span></div>
<div class="row"><span class="left">Gather <a href="like-terms.html">like terms</a>:</span><span class="right">x<sup>2</sup> + y<sup>2</sup> 2x 4y + 1 + 4 9 = 0</span></div>
</div>
<p>And we end up with this:</p>
<p class="center"><span class="large">x<sup>2</sup> + y<sup>2</sup> 2x 4y 4 = 0</span></p>
<p class="center">It is a circle equation, but "in disguise"!</p>
<p>So when you see something like that think <i>"hmm ... that <b>might</b> be a circle!"</i></p>
<p>In fact we can write it in <b>"General Form"</b> by putting constants instead of the numbers:</p>
<div class="def">
<p class="center"><span class="large">x<sup>2</sup> + y<sup>2</sup> + Ax + By + C = 0</span></p>
</div>
<p><i>Note: General Form always has <span class="large">x<sup>2</sup> + y<sup>2</sup></span> for the first two terms</i>.</p>
<h2>Going From General Form to Standard Form</h2>
<p>Now imagine we have an equation in <b>General Form</b>:</p>
<p class="center large">x<sup>2</sup> + y<sup>2</sup> + Ax + By + C = 0</p>
<p>How can we get it into <b>Standard Form</b> like this?</p>
<p class="center large">(xa)<sup>2</sup> + (yb)<sup>2</sup> = r<sup>2</sup></p>
<p>The answer is to <a href="completing-square.html">Complete the Square</a> (read about that) twice ... once for <b>x</b> and once for <b>y</b>:</p>
<div class="example">
<h3>Example: x<sup>2</sup> + y<sup>2</sup> 2x 4y 4 = 0</h3>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">x<sup>2</sup> + y<sup>2</sup> 2x 4y 4 = 0</span></div>
<div class="row"><span class="left">Put <b>x</b>s and <b>y</b>s together:</span><span class="right"><span class="larger">(x<sup>2</sup> 2x) + (y<sup>2</sup> 4y) 4 = 0</span></span></div>
<div class="row"><span class="left">Constant on right:</span><span class="right"><span class="larger">(x<sup>2</sup> 2x) + (y<sup>2</sup> 4y) = 4</span></span></div>
</div>
<p>Now complete the square for <b>x</b> (take half of the 2, square it, and add to both sides):</p>
<p class="larger center">(x<sup>2</sup> 2x + <span class="hilite">(1)<sup>2</sup></span>) + (y<sup>2</sup> 4y) = 4 + <span class="hilite">(1)<sup>2</sup></span></p>
<p>And complete the square for <b>y</b> (take half of the 4, square it, and add to both sides):</p>
<p class="larger center">(x<sup>2</sup> 2x + (1)<sup>2</sup>) + (y<sup>2</sup> 4y + <span class="hilite">(2)<sup>2</sup></span>) = 4 + (1)<sup>2</sup> + <span class="hilite">(2)<sup>2</sup></span></p>
<p>Tidy up:</p>
<div class="tbl">
<div class="row"><span class="left">Simplify:</span><span class="right">(x<sup>2</sup> 2x + 1) + (y<sup>2</sup> 4y + 4) = 9</span></div>
<div class="row"><span class="left">Finally:</span><span class="right">(x 1)<sup>2</sup> + (y 2)<sup>2</sup> = 3<sup>2</sup></span></div>
</div>
<p>And we have it in Standard Form!</p>
<p>(Note: this used the <span class="left"> a=1, b=2, r=3 </span>example from before, so we got it right!)</p>
</div>
<h2>Unit Circle</h2>
<p>If we place the circle center at (0,0) and set the radius to 1 we get:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="../geometry/images/circle-unit-pythagoras.gif" alt="Unit Circle" height="219" width="221"></td>
<td>
<p class="center larger">(xa)<sup>2</sup> + (yb)<sup>2</sup> = r<sup>2</sup></p>
<p class="center larger">(x0)<sup>2</sup> + (y0)<sup>2</sup> = 1<sup>2</sup></p>
<p class="center"><span class="large">x<sup>2</sup> + y<sup>2</sup> = 1</span></p>
Which is the equation of the <a href="../geometry/unit-circle.html">Unit Circle</a></td>
</tr>
</tbody></table>
<h2>How to Plot a Circle by Hand</h2>
<p>1. Plot the center <b>(a,b)</b></p>
<p>2. Plot 4 points "radius" away from the center in the up, down, left and right direction</p>
<p>3. Sketch it in!</p>
<div class="example">
<h3>Example: Plot (x4)<sup>2</sup> + (y2)<sup>2</sup> = 25</h3>
<p>The formula for a circle is <span class="large">(xa)<sup>2</sup> + (yb)<sup>2</sup> = r<sup>2</sup></span></p>
<p>So the center is at <span class="large">(4,2)</span></p>
<p>And <b>r<sup>2</sup></b> is <b>25</b>, so the radius is <span class="large">√25 = 5</span></p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-circle-c.gif" alt="graph circle" height="231" width="260"></p>
<p>So we can plot:</p>
<ul>
<li>The Center: (4,2)</li>
<li>Up: (4,2+5) = (4,7)</li>
<li>Down: (4,25) = (4,3)</li>
<li>Left: (45,2) = (1,2)</li>
<li>Right: (4+5,2) = (9,2)</li>
</ul><div style="clear:both"></div>
<p>Now, just sketch in the circle the best we can!</p>
</div>
<h2>How to Plot a Circle on the Computer</h2>
<p>We need to rearrange the formula so we get "y=".</p>
<p>We should end up with two equations (top and bottom of circle) that can then be plotted.</p>
<div class="example">
<h3>Example: Plot (x4)<sup>2</sup> + (y2)<sup>2</sup> = 25</h3>
<p>So the center is at <span class="large">(4,2)</span>, and the radius is <span class="large">√25 = 5</span></p>
<p>Rearrange to get "y=":</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right"> (x4)<sup>2</sup> + (y2)<sup>2</sup> = 25</span></div>
<div class="row"><span class="left">Move (x4)<sup>2</sup> to the right:</span><span class="right"> (y2)<sup>2</sup> = 25 (x4)<sup>2</sup></span></div>
<div class="row"><span class="left">Take the square root: </span><span class="right">(y2) = ± √[25 (x4)<sup>2</sup>]</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><i>(notice the ± "plus/minus" ...<br>
there can be two square roots!)</i></span></div>
<div class="row"><span class="left">Move the "2" to the right:</span><span class="right">y = 2 ± √[25 (x4)<sup>2</sup>]</span></div>
</div>
<p>&nbsp;</p>
<p>So when we plot these two equations we should have a circle:</p>
<ul>
<li><span class="larger">y = 2 + √[25 (x4)<sup>2</sup>]</span></li>
<li><span class="larger">y = 2 √[25 (x4)<sup>2</sup>]</span></li>
</ul>
<p>Try plotting those functions on the <a href="../data/function-grapher.html">Function Grapher</a>.</p>
<p>It is also possible to use the <a href="../data/grapher-equation.html">Equation Grapher</a> to do it all in one go.</p>
</div>
<p>&nbsp;</p>
<div class="questions">8526, 8527, 8539, 8540, 8515, 8516, 569, 8544, 8559, 8560, 570, 1209</div>
<div class="related">
<a href="../geometry/circle.html">Circle</a>
<a href="../geometry/unit-circle.html">Unit Circle</a>
<a href="../geometry/index.html">Geometry Index</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/circle-equations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:17 GMT -->
</html>