Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

535 lines
24 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/fibonacci-sequence.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:29 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>Fibonacci Sequence</title>
<style>.mono {font-family:"Courier New", Courier, monospace;font-size:20px;text-align:left;}</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js"></script>
</head>
<body id="bodybg">
<div class="bg">
<div id="stt"></div>
<header>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="gtran">
<script>document.write(getTrans());</script>
</div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script>document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
</header>
<nav>
<div id="menuWide" class="menu">
<script>document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script>document.write(getLinks());</script>
</div>
</div>
<div id="search" role="search">
<script>document.write(getSearch());</script>
</div>
<div id="menuSlim" class="menu">
<script>document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script>document.write(getMenu(2));</script>
</div>
</nav>
<div id="extra"></div>
</div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Fibonacci Sequence</h1>
<p>The Fibonacci Sequence is the series of numbers:</p>
<p class="center"><span class="large">0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...</span></p>
<p>The next number is found by adding up the two numbers before it:</p>
<ul>
<li>the 2 is found by adding the two numbers before it (1+1),</li>
<li>the 3 is found by adding the two numbers before it (1+2),</li>
<li>the 5 is (2+3),</li>
<li>and so on!</li>
</ul>
<div class="example">
<h3>Example: the next number in the sequence above is 21+34 = <b>55</b></h3>
</div>
<p>It is that simple!</p>
<p>Here is a longer list:</p>
<p>0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, ...</p>
<p class="center"><i>Can you figure out the next few numbers? </i></p>
<h2>Makes A Spiral</h2>
<p>When we make squares with those widths, we get a nice spiral:</p>
<p class="center"><img src="images/fibonacci-spiral.svg" alt="Fibonacci Spiral" style="max-width:100%"></p>
<p class="center">Do you see how the squares fit neatly together?<br>
For example 5 and 8 make 13, 8 and 13 make 21, and so on.</p>
<p class="center"><img src="images/sunflower.jpg" alt="sunflower" height="283" width="400"><br>
This spiral is found in nature!<br>
See: <a href="nature-golden-ratio-fibonacci.html">Nature, The Golden Ratio,
and Fibonacci</a></p>
<h2>The Rule</h2>
<p>The Fibonacci Sequence can be written as a "Rule" (see <a href="../algebra/sequences-series.html">Sequences and Series</a>).</p>
<p>First, the terms are numbered from 0 onwards like this:</p>
<div class="beach">
<table align="center" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td align="center" width="60"><i>n =</i></td>
<td align="center" width="35"><i>0</i></td>
<td align="center" width="35"><i>1</i></td>
<td align="center" width="35"><i>2</i></td>
<td align="center" width="35"><i>3</i></td>
<td align="center" width="35"><i>4</i></td>
<td align="center" width="35"><i>5</i></td>
<td align="center" width="35"><i>6</i></td>
<td align="center" width="35"><i>7</i></td>
<td align="center" width="35"><i>8</i></td>
<td align="center" width="35"><i>9</i></td>
<td align="center" width="35"><i>10</i></td>
<td align="center" width="35"><i>11</i></td>
<td align="center" width="35"><i>12</i></td>
<td align="center" width="35"><i>13</i></td>
<td align="center" width="35"><i>14</i></td>
<td align="center" width="35"><i>...</i></td>
</tr>
<tr class="large">
<td align="center" width="60">x<sub>n</sub> =</td>
<td align="center" width="35">0</td>
<td align="center" width="35">1</td>
<td align="center" width="35">1</td>
<td align="center" width="35">2</td>
<td align="center" width="35">3</td>
<td align="center" width="35">5</td>
<td align="center" width="35">8</td>
<td align="center" width="35">13</td>
<td align="center" width="35">21</td>
<td align="center" width="35">34</td>
<td align="center" width="35">55</td>
<td align="center" width="35">89</td>
<td align="center" width="35">144</td>
<td align="center" width="35">233</td>
<td align="center" width="35">377</td>
<td align="center" width="35">...</td>
</tr>
</tbody></table>
</div>
<p>So term number 6 is called <span class="larger">x<sub>6</sub></span> (which equals 8).</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>
<p>Example: the <b>8th</b> term is<br>
the <b>7th</b> term plus the <b>6th</b> term:</p>
<p class="center"><br>
<span class="larger">x<sub>8</sub> = x<sub>7</sub> + x<sub>6</sub></span></p>
</td>
<td><img src="images/fibonacci-rule.gif" alt="fibonacci rule x_8 = x_7 + x_6" height="136" width="269"></td>
</tr>
</tbody></table>
</div>
<p>So we can write the rule:</p>
<p class="center larger">The Rule is <b> x<sub>n</sub> = x<sub>n1</sub> + x<sub>n2</sub></b></p>
<p>where:</p>
<ul>
<li><b>x<sub>n</sub></b> is term number "n"</li>
<li><b>x<sub>n1</sub></b> is the previous term (n1)</li>
<li><b>x<sub>n2</sub></b> is the term before that (n2)</li>
</ul>
<div class="example">
<h3>Example: term 9 is calculated like this:</h3>
<div class="tbl">
<div class="row"><span class="left"><span class="larger">x<sub>9</sub></span></span><span class="right"><span class="larger">= x<sub>91</sub> + x<sub>92</sub></span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="larger">= x<sub>8</sub> + x<sub>7</sub></span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="larger">= 21 + 13 </span></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><span class="larger">= 34</span></span></div>
</div>
</div>
<h2>Golden Ratio</h2>
<p style="float:left; margin: 0 20px 5px 0;"><img src="images/golden-rectangle.svg" alt="golden rectangle"></p>
<p>And here is a surprise. When we take any two successive <i>(one after the other)</i> Fibonacci Numbers, their ratio is very close to the <a href="golden-ratio.html">Golden Ratio</a> "<b>φ</b>" which is approximately <b>1.618034...</b></p>
<p>In fact, the bigger the pair of Fibonacci Numbers, the closer the approximation. Let us try a few:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th width="50">
<div align="right">A </div> </th>
<th width="50">
<div align="right">B </div> </th>
<th width="20">&nbsp;</th>
<th width="100">
<div align="left">B / A</div> </th>
</tr>
<tr>
<td width="50">
<div align="right">2</div> </td>
<td width="50">
<div align="right">3</div> </td>
<td width="20">&nbsp;</td>
<td width="100">1.5</td>
</tr>
<tr>
<td width="50">
<div align="right">3</div> </td>
<td width="50">
<div align="right">5</div> </td>
<td width="20">&nbsp;</td>
<td width="100">1.666666666...</td>
</tr>
<tr>
<td width="50">
<div align="right">5</div> </td>
<td width="50">
<div align="right">8</div> </td>
<td width="20">&nbsp;</td>
<td width="100">1.6</td>
</tr>
<tr>
<td width="50">
<div align="right">8</div> </td>
<td width="50">
<div align="right">13</div> </td>
<td width="20">&nbsp;</td>
<td width="100">1.625</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div> </td>
<td height="14" width="50">
<div align="right">...</div> </td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
<tr>
<td width="50">
<div align="right">144</div> </td>
<td width="50">
<div align="right">233</div> </td>
<td width="20">&nbsp;</td>
<td width="100">1.618055556...</td>
</tr>
<tr>
<td width="50">
<div align="right">233</div> </td>
<td width="50">
<div align="right">377</div> </td>
<td width="20">&nbsp;</td>
<td width="100">1.618025751...</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div> </td>
<td height="14" width="50">
<div align="right">...</div> </td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
</tbody></table>
<p>We don't have to start with <b>2 and 3</b>, here I randomly chose <b>192 and 16</b> (and got the sequence <i>192, 16, 208, 224, 432, 656, 1088, 1744, 2832, 4576, 7408, 11984, 19392, 31376, ...</i>):</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th width="50"> <div align="right">A </div></th>
<th width="50"> <div align="right">B </div></th>
<th width="20">&nbsp;</th>
<th width="100"> <div align="left">B / A</div></th>
</tr>
<tr>
<td width="50">
<div align="right"><b>192</b></div></td>
<td width="50">
<div align="right"><b>16</b></div></td>
<td width="20">&nbsp;</td>
<td width="100">0.08333333...</td>
</tr>
<tr>
<td width="50">
<div align="right">16</div></td>
<td width="50">
<div align="right">208</div></td>
<td width="20">&nbsp;</td>
<td width="100">13</td>
</tr>
<tr>
<td width="50">
<div align="right">208</div></td>
<td width="50">
<div align="right">224</div></td>
<td width="20">&nbsp;</td>
<td width="100">1.07692308...</td>
</tr>
<tr>
<td width="50">
<div align="right">224</div></td>
<td width="50">
<div align="right">432</div></td>
<td width="20">&nbsp;</td>
<td width="100">1.92857143...</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div></td>
<td height="14" width="50">
<div align="right">...</div></td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
<tr>
<td width="50">
<div align="right">7408</div></td>
<td width="50">
<div align="right">11984</div></td>
<td width="20">&nbsp;</td>
<td width="100">1.61771058...</td>
</tr>
<tr>
<td width="50">
<div align="right">11984</div></td>
<td width="50">
<div align="right">19392</div></td>
<td width="20">&nbsp;</td>
<td width="100">1.61815754...</td>
</tr>
<tr>
<td height="14" width="50">
<div align="right">...</div></td>
<td height="14" width="50">
<div align="right">...</div></td>
<td height="14" width="20">&nbsp;</td>
<td height="14" width="100">...</td>
</tr>
</tbody></table>
<p>It takes longer to get good values, but it shows that not just the Fibonacci Sequence can do this!</p>
<h2>Using The Golden Ratio to Calculate Fibonacci Numbers</h2>
<p>And even more surprising is that we can <b>calculate any Fibonacci Number</b> using the Golden Ratio:</p>
<p class="center large">x<sub>n</sub> = <span class="intbl"><em>φ<sup>n</sup> (1φ)<sup>n</sup></em><strong>√5</strong></span></p>
<p>The answer comes out <b>as a whole number</b>, exactly equal to the addition of the previous two terms.</p>
<div class="example">
<h3>Example: x<sub>6</sub></h3>
<p class="center larger">x<sub>6</sub> = <span class="intbl"><em>(1.618034...)<sup>6</sup> (11.618034...)<sup>6</sup></em><strong>√5</strong></span></p>
<p>When I used a calculator on this (only entering the Golden Ratio to 6 decimal places) I got the answer <b>8.00000033</b> , a more accurate calculation would be closer to 8.</p>
<p>Try n=12 and see what you get.</p>
</div>
<p>You can also calculate a Fibonacci Number by multiplying the previous Fibonacci Number by the Golden Ratio and then rounding (works for numbers above 1):</p>
<div class="example">
<h3>Example: 8 × φ = 8 × 1.618034... = 12.94427... = 13 (rounded)</h3>
</div>
<h2>Some Interesting Things</h2>
<div class="fun">
<p>Here is the Fibonacci sequence again:</p>
<div class="beach">
<table align="center" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td align="center" width="60"><i>n =</i></td>
<td align="center" width="35"><i>0</i></td>
<td align="center" width="35"><i>1</i></td>
<td align="center" width="35"><i>2</i></td>
<td align="center" width="35"><i>3</i></td>
<td align="center" width="35"><i>4</i></td>
<td align="center" width="35"><i>5</i></td>
<td align="center" width="35"><i>6</i></td>
<td align="center" width="35"><i>7</i></td>
<td align="center" width="35"><i>8</i></td>
<td align="center" width="35"><i>9</i></td>
<td align="center" width="35"><i>10</i></td>
<td align="center" width="35"><i>11</i></td>
<td align="center" width="35"><i>12</i></td>
<td align="center" width="35"><i>13</i></td>
<td align="center" width="35"><i>14</i></td>
<td align="center" width="35"><i>15</i></td>
<td align="center" width="35"><i>...</i></td>
</tr>
<tr>
<td align="center" width="60">x<sub>n</sub> =</td>
<td align="center" width="35">0</td>
<td align="center" width="35">1</td>
<td align="center" width="35">1</td>
<td align="center" width="35">2</td>
<td align="center" width="35">3</td>
<td align="center" width="35">5</td>
<td align="center" width="35">8</td>
<td align="center" width="35">13</td>
<td align="center" width="35">21</td>
<td align="center" width="35">34</td>
<td align="center" width="35">55</td>
<td align="center" width="35">89</td>
<td align="center" width="35">144</td>
<td align="center" width="35">233</td>
<td align="center" width="35">377</td>
<td align="center" width="35">610</td>
<td align="center" width="35">...</td>
</tr>
</tbody></table>
</div>
<p>There is an interesting pattern:</p>
<ul>
<li>Look at the number <b>x<sub>3</sub> = 2</b>. Every <b>3</b>rd number is a multiple of <b>2</b> (2, 8, 34, 144, 610, ...)</li>
<li>Look at the number <b>x<sub>4</sub> = 3</b>. Every <b>4</b>th number is a multiple of <b>3</b> (3, 21, 144, ...)</li>
<li>Look at the number <b>x<sub>5</sub> = 5</b>. Every <b>5</b>th number is a multiple of <b>5</b> (5, 55, 610, ...)</li>
</ul>
<p>And so on (every <b>n</b>th number is a multiple of<b> x<sub>n</sub></b>).</p>
</div><p>&nbsp;</p>
<div class="fun">
<h3>1/89 = 0.011235955056179775...</h3>
<p>Notice the first few digits (0,1,1,2,3,5) are the Fibonacci sequence?</p>
<p>In a way they <b>all</b> are, except multiple digit numbers (13, 21, etc) <b>overlap</b>, like this:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.001</td>
</tr>
<tr>
<td>0.0002</td>
</tr>
<tr>
<td>0.00003</td>
</tr>
<tr>
<td>0.000005</td>
</tr>
<tr>
<td>0.0000008</td>
</tr>
<tr>
<td>0.00000013</td>
</tr>
<tr>
<td>0.000000021</td>
</tr>
<tr>
<td>&nbsp; &nbsp; ... etc ...</td>
</tr>
<tr>
<td style="border-top: 2px solid black"><br></td>
</tr>
<tr>
<td><b>0.011235955056179775...</b>&nbsp; = &nbsp;1/89</td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<h2>Terms Below Zero</h2>
<p>The sequence works below zero also, like this:</p>
<div class="beach">
<table align="center" cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td align="center" width="60"><i>n =</i></td>
<td align="center" width="35"><i>...</i></td>
<td align="center" width="35"><i>6</i></td>
<td align="center" width="35"><i>5</i></td>
<td align="center" width="35"><i>4</i></td>
<td align="center" width="35"><i>3</i></td>
<td align="center" width="35"><i>2</i></td>
<td align="center" width="35"><i>1</i></td>
<td align="center" width="35"><i><b>0</b></i></td>
<td align="center" width="35"><i>1</i></td>
<td align="center" width="35"><i>2</i></td>
<td align="center" width="35"><i>3</i></td>
<td align="center" width="35"><i>4</i></td>
<td align="center" width="35"><i>5</i></td>
<td align="center" width="35"><i>6</i></td>
<td align="center" width="35"><i>...</i></td>
</tr>
<tr class="large">
<td align="center" width="60">x<sub>n</sub> =</td>
<td align="center" width="35">...</td>
<td align="center" width="35">8</td>
<td align="center" width="35">5</td>
<td align="center" width="35">3</td>
<td align="center" width="35">2</td>
<td align="center" width="35">1</td>
<td align="center" width="35">1</td>
<td align="center" width="35">0</td>
<td align="center" width="35">1</td>
<td align="center" width="35">1</td>
<td align="center" width="35">2</td>
<td align="center" width="35">3</td>
<td align="center" width="35">5</td>
<td align="center" width="35">8</td>
<td align="center" width="35">...</td>
</tr>
</tbody></table>
</div>
<p class="center"><i>(Prove to yourself that each number is found by adding up the two numbers before it!)</i></p>
<p>In fact the sequence below zero has the same numbers as the sequence above zero, except they follow a <span class="mono">+-+-</span> ... pattern. It can be written like this:</p>
<p class="center"><span class="large"><b>x</b><sub>n</sub> = (1)<sup>n+1</sup> <b>x</b><sub>n</sub></span></p>
<p>Which says that term "n" is equal to <span class="large">(1)<sup>n+1</sup></span> times term "n", and the value <span class="large">(1)<sup>n+1</sup></span> neatly makes the correct +1, 1, +1, 1, ... pattern.</p>
<h2>History</h2>
<p>Fibonacci was not the first to know about the sequence, it was known in India hundreds of years before!</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/fibonacci.jpg" alt="fibonacci portrait" height="163" width="134"></p>
<h2>About Fibonacci The Man</h2>
<p>His real name was Leonardo Pisano Bogollo, and he lived between 1170 and 1250 in Italy.</p>
<p>"Fibonacci" was his nickname, which roughly means "Son of Bonacci".</p>
<p>As well as being famous for the Fibonacci Sequence, he helped spread <a href="../place-value.html">Hindu-Arabic Numerals</a> (like our present numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) through Europe in place of <a href="../roman-numerals.html">Roman Numerals</a> (I, II, III, IV, V, etc). That has saved us all a lot of trouble! Thank you Leonardo.</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../images/balloons.gif" alt="balloons" height="110" width="100"></p>
<h2>Fibonacci Day</h2>
<p>Fibonacci Day is November 23rd, as it has the digits "1, 1, 2, 3" which is part of the sequence. So next Nov 23 let everyone know!</p>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(1738, 8338, 8339, 8340, 8341, 8343, 3012, 3071, 8841, 8367);</script>&nbsp;
</div>
<div class="related">
<a href="golden-ratio.html">Golden Ratio</a>
<a href="nature-golden-ratio-fibonacci.html">Nature, Golden Ratio and Fibonacci Numbers</a>
<a href="../numberpatterns.html">Number Patterns</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint">
<script>document.write(getAdEnd());</script>
</div>
<footer id="footer" class="centerfull noprint">
<script>document.write(getFooter());</script>
</footer>
<div id="copyrt">
Copyright © 2020 MathsIsFun.com
</div>
<script>document.write(getBodyEnd());</script>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/fibonacci-sequence.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:00:30 GMT -->
</html>