new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
326 lines
16 KiB
HTML
326 lines
16 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/numbers/e-eulers-number.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:54 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>e - Euler's number</title>
|
||
<script language="JavaScript" type="text/javascript">
|
||
reSpell = [
|
||
["memorize", "memorise"]
|
||
];
|
||
</script>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer="defer"></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center"><i><b>e</b></i> (Euler's Number)</h1>
|
||
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/e1.svg" alt="e (eulers number)" height="100" width="100"></p>
|
||
<p>The number <i><b>e</b></i> is one of the most important numbers in mathematics.</p>
|
||
<p>The first few digits are:</p>
|
||
<p class="center"><b>2.7182818284590452353602874713527</b> (and more ...)</p>
|
||
<div class="words">
|
||
<p><i>It is often called <b>Euler's number</b> after Leonhard Euler (pronounced "Oiler").</i></p>
|
||
</div>
|
||
<p><b><i>e</i></b> is an <a href="../irrational-numbers.html">irrational number</a> (it cannot be written as a simple fraction).</p>
|
||
<p><b><i>e</i></b> is the base of the Natural <a href="../sets/function-logarithmic.html">Logarithms</a> (invented by John Napier).</p>
|
||
<p><b><i>e</i></b> is found in many interesting areas, so is worth learning about.</p>
|
||
|
||
|
||
<h2>Calculating</h2>
|
||
|
||
<p>There are many ways of calculating the value of <b><i>e</i></b>, but none of them ever give a totally exact answer, because <b><i>e</i></b> is <a href="../irrational-numbers.html">irrational</a> and its digits go on forever without repeating.</p>
|
||
<p>But it <b>is</b> known to over 1 trillion digits of accuracy!</p>
|
||
<p>For example, the value of <span class="large">(1 + 1/n)<sup>n</sup></span> approaches <i><b>e</b></i> as n gets bigger and bigger:</p>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="../calculus/images/graph-1-1-n-n.gif" alt="graph of (1+1/n)^n" height="218" width="357"></p>
|
||
|
||
<table>
|
||
<tbody>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;"><span class="large">n</span></td>
|
||
<td style="width:150px;"><span class="large">(1 + 1/n)<sup>n</sup></span></td>
|
||
</tr>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;">1</td>
|
||
<td style="width:150px;">2.00000</td>
|
||
</tr>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;">2</td>
|
||
<td style="width:150px;">2.25000</td>
|
||
</tr>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;">5</td>
|
||
<td style="width:150px;">2.48832</td>
|
||
</tr>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;">10</td>
|
||
<td style="width:150px;">2.59374</td>
|
||
</tr>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;">100</td>
|
||
<td style="width:150px;">2.70481</td>
|
||
</tr>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;">1,000</td>
|
||
<td style="width:150px;">2.71692</td>
|
||
</tr>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;">10,000</td>
|
||
<td style="width:150px;">2.71815</td>
|
||
</tr>
|
||
<tr style="text-align:right;">
|
||
<td style="width:100px;">100,000</td>
|
||
<td style="width:150px;">2.71827</td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p> </p>
|
||
<div class="fun">
|
||
<p><b>Try it!</b> Put "(1 + 1/100000)^100000" into the <a href="calculator.html">calculator</a>:</p>
|
||
<p class="center larger">(1 + 1/100000)<sup>100000</sup></p>
|
||
<p>What do you get?</p>
|
||
<!-- <p>And here is an interesting one:</p>
|
||
<p class="center larger">(1 + 9<sup>-4<sup>6×7</sup></sup>)<sup>3<sup>2<sup>85</sup></sup></sup></p>
|
||
<p>It is very close to <i><b>e</b></i>, uses all the digits 1 to 9, but the values are too big for normal calculators.</p>
|
||
<p>But none of these are totally accurate, just approximations.</p>
|
||
--> </div>
|
||
<!--<div class="fun">
|
||
<p><b>Fun Fact</b>: We know that</p>
|
||
<p class="center larger"><i>e</i> ≈ (1 + 1/100,000)<sup>100,000</sup></p>
|
||
<p>So we can choose n = 9<sup>4<sup>6×7</sup></sup> which is <i>also</i> equal to 3<sup>2<sup>85</sup></sup> and get:</p>
|
||
<p class="center larger"><i>e</i> ≈ (1 + 9<sup>-4<sup>6×7</sup></sup>)<sup>3<sup>2<sup>85</sup></sup></sup></p><p>Which is very close to <i><b>e</b></i>, and uses all the digits 1 to 9.</p>
|
||
</div>-->
|
||
|
||
|
||
<h2>Another Calculation</h2>
|
||
|
||
<p>The value of <i><b>e</b></i> is also equal to <span class="intbl"><em>1</em><strong>0!</strong></span> + <span class="intbl"><em>1</em><strong>1!</strong></span> + <span class="intbl"><em>1</em><strong>2!</strong></span> + <span class="intbl"><em>1</em><strong>3!</strong></span> + <span class="intbl"><em>1</em><strong>4!</strong></span> + <span class="intbl"><em>1</em><strong>5!</strong></span> + <span class="intbl"><em>1</em><strong>6!</strong></span> + <span class="intbl"><em>1</em><strong>7!</strong></span> + ... (etc)</p>
|
||
<p class="center"><i>(Note: "!" means <a href="factorial.html">factorial</a>)</i></p>
|
||
<p>The first few terms add up to: 1 + 1 + <span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>1</em><strong>6</strong></span> + <span class="intbl"><em>1</em><strong>24</strong></span> + <span class="intbl"><em>1</em><strong>120</strong></span> = 2.71666...</p>
|
||
<p>In fact Euler himself used this method to calculate <i><b>e</b></i> to 18 decimal places.</p>
|
||
<p>You can try it yourself at the <a href="sigma-calculator.html">Sigma Calculator</a>.</p>
|
||
|
||
|
||
<h2>Remembering</h2>
|
||
|
||
<p>To remember the value of <i><b>e</b></i> (to 10 places) just remember this saying (count the letters!):</p>
|
||
<ul>
|
||
<li>To</li>
|
||
<li>express</li>
|
||
<li><b><i>e</i></b></li>
|
||
<li>remember</li>
|
||
<li>to</li>
|
||
<li>memorize</li>
|
||
<li>a</li>
|
||
<li>sentence</li>
|
||
<li>to</li>
|
||
<li>memorize</li>
|
||
<li>this</li>
|
||
</ul>
|
||
<p>Or you can remember the curious pattern that after the "2.7" the number "1828" appears TWICE:</p>
|
||
<p class="center"><b>2.7 1828 1828</b></p>
|
||
<p>And following THAT are the digits of the angles 45°, 90°, 45° in a <a href="../triangle.html">Right-Angled Isosceles Triangle</a> (no real reason, just how it is):</p>
|
||
<p class="center"><b>2.7 1828 1828 45 90 45</b></p>
|
||
<p><i>(An instant way to seem really smart!)</i></p>
|
||
|
||
|
||
<h2>Growth</h2>
|
||
|
||
<p><b><i>e</i></b> is used in the <b>"Natural</b>" Exponential Function:</p>
|
||
<p class="center"><img src="../sets/images/function-exponential-e.svg" alt="natural exponential function" height="161" width="263"><br>
|
||
<span class="larger">Graph of <b>f(x) = e<sup>x</sup></b></span></p>
|
||
<p>It has this wonderful property: <span class="larger">"its slope is its value"</span></p>
|
||
<div class="def">
|
||
<p>At any point the slope of <i><b>e</b></i><sup>x</sup> equals the value of <i><b>e</b></i><sup>x</sup> :</p>
|
||
<p class="center"><img src="../sets/images/function-exponential-slopes.svg" alt="natural exponential function" height="161" width="263"><br>
|
||
when x=0, the value <i><b>e</b></i><sup>x</sup> = <i><b>1</b></i>, and the slope = <i><b>1</b></i><br>
|
||
when x=1, the value <i><b>e</b></i><sup>x</sup> = <i><b>e</b></i>, and the slope = <i><b>e</b></i><br>
|
||
etc...</p>
|
||
</div>
|
||
<p>This is true anywhere for <i><b>e</b></i><sup>x</sup>, and helps us a lot in <a href="../calculus/introduction.html">Calculus</a> when we need to find slopes etc.</p>
|
||
<p>So <i><b>e</b></i> is perfect for <b>natural growth</b>, see <a href="../algebra/exponential-growth.html">exponential growth</a> to learn more.</p>
|
||
|
||
|
||
<h2>Area</h2>
|
||
|
||
<p>The area <b>up to</b> any x-value is also equal to <b><i>e</i></b><sup>x</sup> :</p>
|
||
<p class="center"><img src="../sets/images/function-exponential-area.svg" alt="natural exponential function" height="161" width="263"></p>
|
||
|
||
|
||
<h2>An Interesting Property</h2>
|
||
|
||
<h3>Just for fun, try "Cut Up Then Multiply"</h3>
|
||
<p>Let us say that we cut a number into equal parts and then multiply those parts together.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: Cut 10 into 2 pieces and multiply them:</h3>
|
||
<p>Each "piece" is 10/2 = <b>5</b> in size</p>
|
||
<p class="center">5×5 = <b>25</b></p>
|
||
</div>
|
||
<p>Now, ... how could we get the answer to be <b>as big as possible</b>, what size should each piece be?</p>
|
||
<p class="center larger">The answer: make the parts as close as possible to "<i><b>e</b></i>" in size.</p>
|
||
|
||
<div class="example">
|
||
|
||
<h3>Example: <b>10</b></h3>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">10 cut into 2 equal parts is 5:</span><span class="right">5×5 = 5<sup>2</sup> = 25</span></div>
|
||
<div class="row"><span class="left">10 cut into 3 equal parts is 3<span class="intbl"><em>1</em><strong>3</strong></span>:</span><span class="right">(3<span class="intbl"><em>1</em><strong>3</strong></span>)×(3<span class="intbl"><em>1</em><strong>3</strong></span>)×(3<span class="intbl"><em>1</em><strong>3</strong></span>) = (3<span class="intbl"><em>1</em><strong>3</strong></span>)<sup>3</sup> = 37.0...</span></div>
|
||
<div class="row"><span class="left">10 cut into 4 equal parts is 2.5:</span><span class="right">2.5×2.5×2.5×2.5 = 2.5<sup>4</sup> = <b>39.0625</b></span></div>
|
||
<div class="row"><span class="left">10 cut into 5 equal parts is 2:</span><span class="right">2×2×2×2×2 = 2<sup>5</sup> = 32</span></div>
|
||
</div>
|
||
</div>
|
||
<p>The winner is the number closest to "<i><b>e</b></i>", in this case 2.5.</p>
|
||
<p>Try it with another number yourself, say 100, ... what do you get?</p>
|
||
|
||
|
||
<h2>100 Decimal Digits</h2>
|
||
|
||
<p>Here is <i><b>e</b></i> to 100 decimal digits:</p>
|
||
<p class="center"><b>2.71828182845904523536028747135266249775724709369995957<br>
|
||
49669676277240766303535475945713821785251664274...</b></p>
|
||
|
||
|
||
<h2>Advanced: Use of <i><b>e</b></i> in Compound Interest</h2>
|
||
|
||
<p>Often the number <i><b>e</b></i> appears in unexpected places. Such as in <b>finance</b>.</p>
|
||
|
||
<div class="example">
|
||
<p>Imagine a wonderful bank that pays 100% interest.</p>
|
||
<p class="center">In one year you could turn $1000 into $2000.</p>
|
||
<p>Now imagine the bank pays twice a year, that is 50% and 50%</p>
|
||
<p class="center">Half-way through the year you have $1500,<br>
|
||
you reinvest for the rest of the year and your $1500 grows to $2250</p>
|
||
<p>You got <b>more money</b>, because you reinvested half way through.</p>
|
||
<p>That is called <a href="../money/compound-interest-periodic.html">compound interest</a>.</p></div>
|
||
<p>Could we get even <i>more</i> if we broke the year up into months?</p>
|
||
<p>We can use this formula:</p>
|
||
<p class="center large">(1+r/n)<sup>n</sup></p>
|
||
<p class="center"><b>r</b> = annual interest rate (as a decimal, so <b>1</b> not 100%)<br>
|
||
<b>n</b> = number of periods within the year</p>
|
||
<p>Our half yearly example is:</p>
|
||
<p class="center large">(1+1/2)<sup>2</sup> = 2.25</p>
|
||
<p>Let's try it monthly:</p>
|
||
<p class="center large">(1+1/12)<sup>12</sup> = 2.613...</p>
|
||
<p>Let's try it 10,000 times a year:</p>
|
||
<p class="center large">(1+1/10,000)<sup>10,000</sup> = 2.718...</p>
|
||
<p><span class="large">Yes, it is heading towards <i><b>e</b></i></span> (and is how Jacob Bernoulli first discovered it).</p>
|
||
<p> </p>
|
||
|
||
<h3>Why does that happen?</h3>
|
||
<p>The answer lies in the similarity between:</p>
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr style="text-align:center;">
|
||
<td style="text-align:right;">Compounding Formula:</td>
|
||
<td style="width:20px;"> </td>
|
||
<td><span class="large">(1 + r/n)<sup>n</sup></span></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>and </td>
|
||
<td> </td>
|
||
<td> </td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="text-align:right;"><i><b>e</b></i> (as n approaches infinity):</td>
|
||
<td> </td>
|
||
<td><span class="large">(1 + 1/n)<sup>n</sup></span></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>The Compounding Formula is <b>very like</b> the formula for <i><b>e</b></i><i> (as n approaches infinity)</i>, just with an extra <b>r</b> (the interest rate).</p>
|
||
<p>When we chose an interest rate of 100% (= 1 as a decimal), the formulas became the same.</p>
|
||
<p>Read <a href="../money/compound-interest-periodic.html">Continuous Compounding</a> for more.</p>
|
||
|
||
|
||
<h2>Euler's Formula for Complex Numbers</h2>
|
||
|
||
<p><b><i>e</i></b> also appears in this most amazing equation: </p>
|
||
<p class="large center"><i>e</i><sup><i><b>i</b></i><span class="times">π</span></sup> + 1 = 0</p>
|
||
<p><a href="../algebra/eulers-formula.html">Read more here</a></p>
|
||
|
||
|
||
<h2>Transcendental</h2>
|
||
|
||
<p><b><i>e</i></b> is also a <a href="transcendental-numbers.html">transcendental</a> number.</p>
|
||
<h2>e-Day</h2>
|
||
<p style="float:right; margin: 0 0 5px 10px;">
|
||
<img src="../images/style/balloons.svg" alt="balloons">
|
||
</p>
|
||
<p>Celebrate this amazing number on </p>
|
||
<ul>
|
||
<li>27th January: <b>27/1 at 8:28</b> if you like writing your days first, or</li>
|
||
<li>February 7th: <b>2/7 at 18:28</b> if you like writing your months first, or</li>
|
||
|
||
<li>On both days!</li></ul>
|
||
|
||
<p><br></p>
|
||
<div class="questions">2011, 2012, 2013</div>
|
||
|
||
<div class="related">
|
||
<a href="../algebra/eulers-formula.html">Euler's Formula for Complex Numbers</a>
|
||
<a href="../irrational-numbers.html">Irrational Number</a>
|
||
<a href="index.html">Numbers Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/numbers/e-eulers-number.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:56 GMT -->
|
||
</html> |