lkarch.org/tools/mathisfun/www.mathsisfun.com/irrational-numbers.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

262 lines
11 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/irrational-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:17 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Irrational Numbers</title>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="style4.css" as="style">
<link rel="preload" href="main4.js" as="script">
<link rel="stylesheet" href="style4.css">
<script src="main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="index.html"><img src="images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Irrational Numbers</h1>
<p class="center">An <b>Irrational Number</b> is a real number that <b>cannot</b> be written as a simple fraction:</p>
<p class="center"><img src="numbers/images/rational-vs-irrational.svg" alt="rational vs irrational" style="max-width:100%" height="79" width="542"></p>
<p>&nbsp;<b>1.5</b> is rational, but <span class="times"><b>π</b></span> is irrational</p>
<p class="center large">Irrational means <b>not Rational</b> (no ratio)</p>
<p>Let's look at what makes a number rational or irrational ...</p>
<h3>Rational Numbers</h3>
<p>A <b><a href="rational-numbers.html">Rational</a></b> Number <b>can</b> be written as a <b>Ratio</b> of two integers (ie a simple fraction).</p>
<div class="example">
<p>Example: <b>1.5</b> is rational, because it can be written as the ratio <b>3/2</b></p>
</div>
<div class="example">
<p>Example: <b>7</b> is rational, because it can be written as the ratio <b>7/1</b></p>
</div>
<div class="example">
<p>Example <b>0.333...</b> (3 repeating) is also rational, because it can be written as the ratio <b>1/3</b></p>
</div>
<p>&nbsp;</p>
<h3>Irrational Numbers</h3>
<p>But some numbers <b>cannot</b> be written as a ratio of two integers ...</p>
<p class="center larger">...they are called <b>Irrational Numbers</b>.</p>
<div class="example">
<h3>Example: <span class="times"><b>π</b> </span><b><a href="numbers/pi.html">(Pi)</a></b> is a famous irrational number.</h3>
<p style="float:left; margin: 0 10px 5px 0;"><img src="numbers/images/pi1.svg" alt="Pi" height="100" width="100"></p>
<p class="center"><b><span class="times"><b>π</b></span>&nbsp;=&nbsp;3.1415926535897932384626433832795...&nbsp;(and&nbsp;more)</b></p>
<p>We <b>cannot</b> write down a simple fraction that equals Pi.</p>
<p>The popular approximation of <span class="frac"><sup>22</sup>/<sub>7</sub></span> = 3.1428571428571... is close but <b>not accurate</b>.</p>
</div>
<p>Another clue is that the decimal goes on forever without repeating.</p>
<h2>Cannot Be Written as a Fraction</h2>
<p class="center fun"><i>It is <b>irrational</b> because it cannot be written as a <b>ratio</b> (or fraction),<br>
not because it is crazy!</i></p>
<p>So we can tell if it is Rational or Irrational by trying to write the number as a simple fraction.</p>
<div class="example">
<h3>Example: <b>9.5</b> can be written as a simple fraction like this:</h3>
<p class="center larger">9.5 = <span class="intbl"><em>19</em><strong>2</strong></span></p>
<p class="center large">So it is a <b>rational number</b> (and so is <b>not irrational</b>)</p>
</div>
<p>Here are some more examples:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<th>Number</th>
<th width="10">&nbsp;</th>
<th>As a Fraction</th>
<th width="30">&nbsp;</th>
<th>Rational or<br>
Irrational?</th>
</tr>
<tr style="text-align:center;">
<td height="9">1.75</td>
<td>&nbsp;</td>
<td height="9"><span class="intbl"><em>7</em><strong>4</strong></span></td>
<td>&nbsp;</td>
<td height="9">Rational</td>
</tr>
<tr style="text-align:center;">
<td>.001</td>
<td>&nbsp;</td>
<td><span class="intbl"><em>1</em><strong>1000</strong></span></td>
<td>&nbsp;</td>
<td>Rational</td>
</tr>
<tr style="text-align:center;">
<td>√2<br>
(square root of 2)</td>
<td class="large">&nbsp;</td>
<td class="large">?</td>
<td>&nbsp;</td>
<td><b>Irrational !</b></td>
</tr>
</tbody></table>
<div class="simple">
<h2>Square Root of 2</h2>
<p>Let's look at the square root of 2 more closely.</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="numbers/images/square-root-2.svg" alt="square root 2" height="171" width="158"></td>
<td>When we draw a square of size "1",<br>
what is the distance across the diagonal?</td>
</tr>
</tbody></table>
<p>The answer is the <b><a href="square-root.html">square root</a> of 2</b>, which is<b> 1.4142135623730950...(etc)</b></p>
<p>But it is not a number like 3, or five-thirds, or anything like that ...</p>
<div class="indent50px">
<p class="center">... in fact we <b>cannot</b> write the square root of 2 using a ratio of two numbers ...</p>
<p class="center">... (you can learn <b>why</b> on the <a href="numbers/irrational-finding.html">Is It Irrational?</a> page) ...</p>
<p class="center">... and so we know it is <b>an irrational number</b>.</p>
</div>
</div>
<h2>Famous Irrational Numbers</h2>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><img src="numbers/images/pi1.svg" alt="Pi" height="100" width="100"></td>
<td>&nbsp;</td>
<td>
<p><b><a href="numbers/pi.html">Pi</a></b> is a famous irrational number. People have calculated Pi to over a quadrillion decimal places and still there is no pattern. The first few digits look like this:</p>
<p>3.1415926535897932384626433832795 (and more ...)</p>
</td>
</tr>
<tr>
<td><img src="numbers/images/e1.svg" alt="e (eulers number)" height="100" width="100"></td>
<td>&nbsp;</td>
<td>
<p>The number <i><b>e</b></i> (<a href="numbers/e-eulers-number.html">Euler's Number</a>) is another famous irrational number. People have also calculated <i><b>e</b></i> to lots of decimal places without any pattern showing. The first few digits look like this:</p>
<p>2.7182818284590452353602874713527 (and more ...)</p>
</td>
</tr>
<tr>
<td><img src="numbers/images/phi.svg" alt="phi" height="95" width="84"></td>
<td>&nbsp;</td>
<td>
<p>The <a href="numbers/golden-ratio.html">Golden Ratio</a> is an irrational number. The first few digits look like this:</p>
<p>1.61803398874989484820... (and more ...)</p>
</td>
</tr>
<tr>
<td><img src="numbers/images/radical.svg" alt="radical symbol" height="95" width="72"></td>
<td>&nbsp;</td>
<td>
<p>Many square roots, cube roots, etc are also irrational numbers. Examples:</p>
<div class="simple">
<table style="border: 0;">
<tbody>
<tr>
<td>√3</td>
<td>1.7320508075688772935274463415059 (etc)</td>
</tr>
<tr>
<td>√99</td>
<td>9.9498743710661995473447982100121 (etc)</td>
</tr>
</tbody></table>
</div>
</td>
</tr>
</tbody></table>
<p>But √4 = 2 is rational, and √9 = 3 is rational ...</p>
<p class="center">... so <b>not all</b> roots are irrational.</p>
<h3>&nbsp;</h3>
<h3>Note on Multiplying Irrational Numbers</h3>
<p>Have a look at this:</p>
<ul>
<li><span class="times">π</span> × <span class="times">π</span> = <span class="times">π</span><sup>2</sup> is known to be <b>irrational</b></li>
<li>But √2 × √2 = <b>2</b> is <b>rational</b></li>
</ul>
<p>So be careful ... multiplying irrational numbers <b>might</b> result in a rational number!</p>
<p>&nbsp;</p>
<div class="fun">
<h3>Fun Facts ....</h3>
<p>Apparently <b><i>Hippasus</i></b> (one of <i>Pythagoras'</i> students) discovered irrational numbers when trying to write the square root of 2 as a fraction (using geometry, it is thought). Instead he proved the square root of 2 <i>could not</i> be written as a fraction, so it is <i>irrational</i>.</p>
<p>But followers of <i><b>Pythagoras</b></i> could not accept the existence of irrational numbers, and it is said that Hippasus was drowned at sea as a punishment from the gods!</p>
</div>
<p>&nbsp;</p>
<div class="questions">434,435,1064,2022,3987,1065,3988,2023,2990,2991</div>
<div class="related">
<a href="surds.html">Surds</a>
<a href="square-root.html">Square Roots</a>
<a href="scientific-calculator.html">Scientific Calculator</a>
<a href="numbers/irrational-finding.html">Is It Irrational?</a>
<a href="numbers/index.html">Numbers Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/irrational-numbers.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:18 GMT -->
</html>