new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
168 lines
7.2 KiB
HTML
168 lines
7.2 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
|
|
|
|
<!-- Mirrored from www.mathsisfun.com/geometry/pythagoras-areas.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:08:51 GMT -->
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
|
|
|
|
|
<!-- #BeginEditable "doctitle" -->
|
|
<title>Pythagoras' Theorem and Areas</title>
|
|
<meta name="description" content="Learn the generalized form of the Pythagorean Theorem">
|
|
<!-- #EndEditable -->
|
|
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
|
<meta name="HandheldFriendly" content="true">
|
|
<meta name="referrer" content="always">
|
|
<link rel="stylesheet" href="../style4.css">
|
|
<script src="../main4.js"></script>
|
|
<script>document.write(gTagHTML())</script>
|
|
</head>
|
|
|
|
<body id="bodybg">
|
|
|
|
<div id="stt"></div>
|
|
<div id="adTop"></div>
|
|
<header>
|
|
<div id="hdr"></div>
|
|
<div id="tran"></div>
|
|
<div id="adHide"></div>
|
|
<div id="cookOK"></div>
|
|
</header>
|
|
|
|
<div class="mid">
|
|
|
|
<nav>
|
|
<div id="menuWide" class="menu"></div>
|
|
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
|
|
|
|
<div id="search" role="search"></div>
|
|
<div id="linkto"></div>
|
|
|
|
<div id="menuSlim" class="menu"></div>
|
|
<div id="menuTiny" class="menu"></div>
|
|
</nav>
|
|
|
|
<div id="extra"></div>
|
|
|
|
<article id="content" role="main">
|
|
|
|
<!-- #BeginEditable "Body" -->
|
|
|
|
<h1>Pythagoras' Theorem and Areas</h1>
|
|
|
|
<h2>Pythagoras' Theorem</h2>
|
|
<p>Let's start with a quick refresher of the famous Pythagoras' Theorem.</p>
|
|
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/triangle-abc.svg" alt="triangle abc" style="width: 201px; height: 115px;"></p>
|
|
<p style="text-align: center;">Pythagoras' Theorem says that, in a
|
|
right angled triangle:<br>
|
|
the square of the hypotenuse (<strong>c</strong>) is equal to the sum of
|
|
the squares of the other two sides (<strong>a</strong> and <strong>b</strong>).</p>
|
|
<p class="center large">a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></p>
|
|
<p>That means we can draw squares on each side:</p>
|
|
<p class="center"><img src="images/pythagoras-squares-area.svg" alt="Pythagoras Areas" class="center"></p>
|
|
<p>And this will be true:</p>
|
|
<p class="largest center">A + B = C</p>
|
|
|
|
|
|
<p>You can learn more about the <a href="../pythagoras.html">Pythagorean
|
|
Theorem</a> and review its <a href="pythagorean-theorem-proof.html">algebraic
|
|
proof</a>.</p>
|
|
<h2>A More Powerful Pythagorean Theorem </h2>
|
|
|
|
<p>Say we want to draw semicircles on each side of a right triangle:</p>
|
|
<div style="text-align: center;"><img src="images/pythagoras-circle.svg" alt="Pythagoras semicircle"><br>
|
|
<strong>A</strong>, <strong>B</strong> and<strong> C</strong>
|
|
are the areas of each<br>
|
|
semicircle with diameters <strong>a</strong>,
|
|
<strong>b</strong> and <strong>c</strong>.</div>
|
|
|
|
|
|
<p>Maybe A + B = C ?</p>
|
|
<p>But they aren't squares! Yet let's go ahead anyway to see where it leads us.</p>
|
|
|
|
|
|
|
|
|
|
|
|
<p>OK, the area of a <a href="circle.html">circle</a> with diameter "D" is:</p>
|
|
<p class="center larger"><strong>Area of Circle</strong> = <span class="intbl"><em>1</em> <strong>4</strong> </span> <span class="times">π</span> D<sup>2</sup></p>
|
|
|
|
<p>So the area of a semicircle is <b>half</b> of that:</p>
|
|
<p class="center larger"><strong>Area of Semicircle</strong> = <span class="intbl"><em>1</em> <strong>8</strong> </span> <span class="times">π</span> D<sup>2</sup></p>
|
|
|
|
|
|
<p>And so the area of each semicircle is:</p>
|
|
<p class="center larger"><strong>A</strong> = <span class="intbl"><em>1</em>
|
|
<strong>8</strong> </span> <span class="times">π</span>a<sup>2</sup></p>
|
|
<p class="center larger"><strong>B</strong> = <span class="intbl"><em>1</em>
|
|
<strong>8</strong> </span> <span class="times">π</span>b<sup>2</sup></p>
|
|
<p class="center larger"><strong>C</strong> = <span class="intbl"><em>1</em>
|
|
<strong>8</strong> </span> <span class="times">π</span>c<sup>2</sup></p>
|
|
|
|
<p>Now our question:</p>
|
|
<div class="fun">
|
|
<p class="center larger">Does A + B = C ?</p>
|
|
</div>
|
|
<p>Let's substitute the values:</p>
|
|
<p class="center larger">Does <span class="intbl"><em>1</em> <strong>8</strong>
|
|
</span><span class="times">π</span>a<sup>2 </sup>+ <span class="intbl"><em>1</em>
|
|
<strong>8</strong> </span><span class="times">π</span>b<sup>2</sup>
|
|
= <span class="intbl"><em>1</em> <strong>8</strong> </span><span class="times">π</span>c<sup>2</sup> ?</p>
|
|
<p>We can <a href="../algebra/factoring.html">factor out</a> <span class="intbl"><em>1</em>
|
|
<strong>8</strong> </span><span class="times">π</span> and we get:</p>
|
|
<p class="center larger">a<sup>2 </sup>+ b<sup>2</sup> = c<sup>2</sup></p>
|
|
<p>Yes! It is simply Pythagoras' Theorem.</p>
|
|
<p>Therefore, we have shown that Pythagoras' Theorem is true for
|
|
semicircles.</p>
|
|
<p>Will it work for any other shape?</p>
|
|
<div style="text-align: center;"><img src="images/pythagoras-star.svg" alt="Pythagoras' Star"></div>
|
|
<p>Yes! The Pythagorean Theorem can be taken further into a
|
|
shape-generalized form as long as the shapes are <a href="similar.html">similar</a> (has a special meaning in Geometry).</p>
|
|
<p><br></p>
|
|
<div class="def">
|
|
|
|
<p class="larger"><b> Shape-Generalization Form of the Pythagorean
|
|
Theorem:<br>
|
|
</b><br>
|
|
Given a right triangle, we can draw <b>similar</b> shapes on
|
|
each side so that the area of the shape constructed on the
|
|
hypotenuse is the sum of the areas of similar shapes constructed on
|
|
the legs of the triangle.</p>
|
|
|
|
<p class="largest center">A + B = C</p>
|
|
|
|
<p class="larger">Where:</p>
|
|
<ul style="text-align: left;">
|
|
<li><strong>A</strong> is the area of the shape on the
|
|
hypotenuse.<strong></strong></li>
|
|
<li><strong>B</strong> and <strong>C</strong> are the areas of the
|
|
shapes on the legs.</li>
|
|
</ul>
|
|
|
|
</div>
|
|
<p><br></p>
|
|
<p>The Theorem still holds for cool shapes that are not polygons, such as
|
|
this amazing dragon!</p>
|
|
<div style="text-align: center;"><img src="images/pythagoras-dragon.svg" alt="Pythagoras' Dragon"></div><br>
|
|
<p><br></p>
|
|
<p><br></p>
|
|
|
|
<div class="related">
|
|
<a href="../pythagoras.html">Pythagorean Theorem</a>
|
|
<a href="pythagorean-theorem-proof.html">Pythagorean Theorem Algebraic Proof</a>
|
|
<a href="pythagoras-3d.html">Pythagorean Theorem in 3D</a>
|
|
<a href="index.html">Geometry Index</a>
|
|
</div>
|
|
<!-- #EndEditable -->
|
|
|
|
</article>
|
|
|
|
<div id="adend" class="centerfull noprint"></div>
|
|
<footer id="footer" class="centerfull noprint"></footer>
|
|
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
|
|
|
|
</div>
|
|
</body><!-- #EndTemplate -->
|
|
<!-- Mirrored from www.mathsisfun.com/geometry/pythagoras-areas.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:08:52 GMT -->
|
|
</html> |