new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
290 lines
13 KiB
HTML
290 lines
13 KiB
HTML
<!doctype html>
|
||
<html lang="en">
|
||
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
<!-- Mirrored from www.mathsisfun.com/geometry/eulers-formula.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:44:44 GMT -->
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Euler's Formula</title>
|
||
|
||
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
|
||
<h1 class="center">Euler's Formula</h1>
|
||
|
||
<p class="center"><i>(There is another "<a href="../algebra/eulers-formula.html">Euler's Formula</a>" about complex numbers,<br>
|
||
this page is about the one used in Geometry and Graphs)</i></p>
|
||
|
||
|
||
<h2>Euler's Formula</h2>
|
||
|
||
<div class="indent50px">
|
||
<p><b>For any polyhedron <i>that doesn't intersect itself,</i> the</b></p>
|
||
<ul>
|
||
<li><b>Number of Faces</b></li>
|
||
<li>plus the <b>Number of Vertices</b> (corner points)</li>
|
||
<li>minus the <b>Number of Edges</b></li>
|
||
</ul>
|
||
<p><b>always equals 2</b></p>
|
||
</div><p> </p>
|
||
<p class="center larger">This can be written: <b>F + V − E = 2</b></p><br>
|
||
<table align="center" width="90%" border="0">
|
||
<tbody>
|
||
<tr>
|
||
<td width="22%"> <img src="images/poly-cube.svg" alt="hexahedron" height="88" width="88" ></td>
|
||
<td width="78%">
|
||
<p>Try it on the cube:</p>
|
||
<p>A cube has 6 Faces, 8 Vertices, and 12 Edges,</p>
|
||
<p>so:</p>
|
||
<p class="center larger">6 + 8 − 12 = <b>2</b></p>
|
||
</td>
|
||
</tr>
|
||
</tbody></table>
|
||
|
||
|
||
<h2>Example With Platonic Solids</h2>
|
||
|
||
<p>Let's try with the 5 Platonic Solids:</p>
|
||
<div class="beach">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr style="text-align:center;">
|
||
<th width="100">Name</th>
|
||
<th width="50"> </th>
|
||
<th width="60">Faces</th>
|
||
<th width="60">Vertices</th>
|
||
<th width="60">Edges</th>
|
||
<th width="60">F+V-E</th>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:100px;">Tetrahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-tetrahedron.svg" alt="Tetrahedron" height="94" width="90" ></td>
|
||
<td style="width:60px;">4</td>
|
||
<td style="width:60px;">4</td>
|
||
<td style="width:60px;">6</td>
|
||
<td style="width:60px;"><b>2</b></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:100px;">Cube</td>
|
||
<td style="width:50px;"><img src="images/poly-cube.svg" alt="Cube" height="88" width="88" ></td>
|
||
<td style="width:60px;">6</td>
|
||
<td style="width:60px;">8</td>
|
||
<td style="width:60px;">12</td>
|
||
<td style="width:60px;"><b>2</b></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:100px;">Octahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-octahedron.svg" alt="Octahedron" height="86" width="85" ></td>
|
||
<td style="width:60px;">8</td>
|
||
<td style="width:60px;">6</td>
|
||
<td style="width:60px;">12</td>
|
||
<td style="width:60px;"><b>2</b></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:100px;"> Dodecahedron</td>
|
||
<td style="width:50px;"><img src="images/poly-dodecahedron.svg" alt="Dodecahedron" height="93" width="93" ></td>
|
||
<td style="width:60px;">12</td>
|
||
<td style="width:60px;">20</td>
|
||
<td style="width:60px;">30</td>
|
||
<td style="width:60px;"><b>2</b></td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td style="width:100px;"> Icosahedron </td>
|
||
<td style="width:50px;"><img src="images/poly-icosahedron.svg" alt="Icosahedron" height="94" width="81" ></td>
|
||
<td style="width:60px;">20</td>
|
||
<td style="width:60px;">12</td>
|
||
<td style="width:60px;">30</td>
|
||
<td style="width:60px;"><b>2</b></td>
|
||
</tr>
|
||
</tbody></table></div>
|
||
<p class="center"><i>(In fact Euler's Formula can be used to <a href="platonic-solids-why-five.html">prove there are only 5 Platonic Solids</a>)</i></p>
|
||
<div class="simple">
|
||
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td style="text-align:right;">
|
||
<p><b>Why always 2?</b><br>
|
||
Imagine taking the cube and adding an edge<br>
|
||
(from corner to corner of one face).<br>
|
||
<br>
|
||
We get an extra edge, plus an extra face:</p>
|
||
<p class="larger"><b>7</b> + 8 − <b>13</b> = 2</p></td>
|
||
<td><img src="images/cube-extra-face.svg" alt="cube extra face" height="88" width="88" ></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;"> </td>
|
||
<td> </td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;">
|
||
<p>Or try to include another vertex,<br>
|
||
and
|
||
we get an extra edge:</p>
|
||
<p class="larger">6 + <b>9</b> − <b>13</b> = 2.</p></td>
|
||
<td><img src="images/cube-extra-vertex.svg" alt="cube extra vertex" height="88" width="88" ></td>
|
||
</tr>
|
||
<tr>
|
||
<td style="text-align:right;"><i><b>"No matter what we do, we always end up with 2"</b><br>
|
||
(But only for this type of Polyhedron ... read on!)</i></td>
|
||
<td> </td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
|
||
|
||
<h2>The Sphere</h2>
|
||
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/sphere-icosa.jpg" alt="sphere like icosahedron" height="99" width="100" ></p>
|
||
<p>All Platonic Solids (and many other solids) are like a <a href="sphere.html">Sphere</a> ... we can reshape them so that they become a Sphere (move their corner points, then curve their faces a bit).</p>
|
||
<p class="large">For this reason we know that <b>F + V − E = 2 for a sphere</b></p>
|
||
<p>(Be careful, we can <b>not</b> simply say a sphere has 1 face, and 0 vertices and edges, for F+V−E=1)</p>
|
||
<p>So, the result is 2 again.</p>
|
||
|
||
|
||
<h2>But Not Always 2 ... !</h2>
|
||
|
||
<p>Now that you see how its works, let's discover how it <b>doesn't</b> work.</p>
|
||
<p>Let us join up two opposite corners of an icosahedron like this:</p>
|
||
<div class="script" style="height: 450px;">
|
||
images/polyhedra.js?mode=icosahedron-intersected
|
||
</div>
|
||
<p>It is still an icosahedron (but no longer convex).</p>
|
||
<p>In fact it looks a bit like a drum where someone has stitched the top and bottom together.</p>
|
||
<p>There are the same number of edges and faces ... <b>but one less vertex</b>!</p>
|
||
<p>So:</p>
|
||
<p class="center"><b class="large">F + V − E = 1</b></p>
|
||
<p class="center"><b>Oh No! It doesn't always add to 2.</b></p>
|
||
<p>The reason it didn't work was that this new shape is basically different ... that joined bit in the middle means that two vertices become 1.</p>
|
||
|
||
|
||
<h2>Euler Characteristic</h2>
|
||
|
||
<p>So, F+V−E can equal 2, or 1, and maybe other values, so the more general formula is</p>
|
||
<p class="center large"><b>F + V − E = <font face="Times New Roman, Times, serif" size="+2">χ</font></b></p>
|
||
<p class="center">Where <b class="larger"><font face="Times New Roman, Times, serif" size="+2">χ</font></b> is called the "<b>Euler Characteristic</b>".</p>
|
||
<p>Here are a few examples:</p>
|
||
<div class="beach">
|
||
|
||
<table align="center" width="57%" border="0">
|
||
<tbody>
|
||
<tr style="text-align:center;">
|
||
<th>Shape</th>
|
||
<th> </th>
|
||
<th width="100"><b class="larger"><font face="Times New Roman, Times, serif" size="+2">χ</font></b></th>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>Sphere</td>
|
||
<td><img src="images/50px-sphere.jpg" alt="sphere" height="50" width="57" ></td>
|
||
<td style="width:100px;">2</td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>Torus</td>
|
||
<td><img src="images/50px-torus.jpg" alt="torus" height="50" width="68" ></td>
|
||
<td style="width:100px;">0</td>
|
||
</tr>
|
||
<tr style="text-align:center;">
|
||
<td>Mobius Strip</td>
|
||
<td><img src="images/100px-mobius-strip.png" alt="mobius strip" height="79" width="100" ></td>
|
||
<td style="width:100px;">0</td>
|
||
</tr>
|
||
</tbody></table><p> </p>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/cubohemioctahedron.jpg" alt="cubohemioctahedron" height="165" width="165" ><br></p>
|
||
<p>And the Euler Characteristic can also be less than zero.</p>
|
||
<p>This is the "Cubohemioctahedron": It has 10 Faces (it may look like more, but some of the "inside" faces are really just one face), 24 Edges and 12 Vertices, so:</p>
|
||
<p class="center"><b class="large">F + V − E = −2</b></p>
|
||
</div>
|
||
<p>In fact the Euler Characteristic is a basic idea in Topology (the study of the Nature of Space).</p>
|
||
|
||
|
||
<h2>Donut and Coffee Cup</h2>
|
||
|
||
<!-- <div class="flash" style="float:left; margin: 0 10px 5px 0;">
|
||
<script>putFlash6(228,224,'images/torus-coffee-cup.swf','','#FFFFFF');</script>
|
||
<noscript>
|
||
<object type="application/x-shockwave-flash" width="228" height="224" data="images/torus-coffee-cup.swf" align="middle">
|
||
<param name="allowScriptAccess" value="sameDomain" /><param name="allowFullScreen" value="true" /><param name="movie" value="images/torus-coffee-cup.swf" /><param name="quality" value="high" /><param name="bgcolor" value="#FFFFFF" /></object>
|
||
</noscript>
|
||
</div>
|
||
-->
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/torus-coffee-cup-2.gif" alt="torus becomes coffee cup" height="240" width="240" ><br>
|
||
<i>(Animation courtesy<br>
|
||
Wikipedia User:Kieff)</i></p>
|
||
<p>Lastly, this discussion would be incomplete without showing that a Donut and a Coffee Cup are really the same!</p>
|
||
<p>Well, they can be deformed into one another.</p>
|
||
<p>We say the two objects are "homeomorphic" (from Greek <i>homoios</i> = identical and <i>morphe</i> = shape)</p>
|
||
<p>Just like the platonic solids are homeomorphic to the sphere.</p>
|
||
<p>And your body is homeomorphic to a torus if you pinch your nose closed.</p>
|
||
<div style="clear:both"></div>
|
||
<p> </p>
|
||
<div class="questions">1845, 1846, 1847, 2147, 1844, 3374, 3375, 3376, 7655, 2148</div>
|
||
|
||
<div class="related">
|
||
<a href="../platonic_solids.html">Platonic Solids</a>
|
||
<a href="index.html">GeometryIndex</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
|
||
|
||
</div>
|
||
</body>
|
||
<!-- #EndTemplate -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/geometry/eulers-formula.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:44:45 GMT -->
|
||
</html>
|