Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

381 lines
16 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/limits-formal.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Limits (Formal Definition)</title>
<meta name="description" content="Sometimes we cant work something out directly ... but we can see what it should be as we get closer and closer">
<style>
.lim {
display: inline-table;
text-align: center;
vertical-align: middle;
margin: 0 4px 0 2px;
border-collapse: collapse;
}
.lim em {
display: table-row;
text-align: center;
font-style: inherit;
}
.lim strong {
display: table-row;
text-align: center;
font-weight: inherit;
font-size: 80%;
line-height: 9px;
}
.del {
color: hsl(240,100%,80%);
font: bold 150% "Times New Roman", serif;
}
.eps {
color: hsl(0,100%,60%);
font: bold 150% "Times New Roman", serif;
}
.del, .eps {padding:2px; vertical-align:baseline; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Limits <i>(Formal Definition)</i></h1>
<div class="center"><i>Please read <a href="limits.html">Introduction to Limits</a> first</i></div>
<h2>Approaching ...</h2>
<p>Sometimes we can't work something out directly ... but we <b>can</b> see what it should be as we get closer and closer!</p>
<div class="example">
<h3>Example:</h3>
<p class="center large"><span class="intbl"> <em>(x<sup>2</sup> 1)</em> <strong>(x 1)</strong> </span></p>
<p>Let's work it out for x=1:</p>
<p class="center large"><span class="intbl"> <em>(1<sup>2 </sup> 1)</em> <strong>(1 1)</strong> </span> = <span class="intbl"> <em>(1 1)</em> <strong>(1 1)</strong> </span> = <span class="intbl"> <em>0</em> <strong>0</strong> </span></p>
</div>
<p>Now 0/0 is a difficulty! We don't really know the value of 0/0 (it is "indeterminate"), so we need another way of answering this.</p>
<p>So instead of trying to work it out for x=1 let's try <b>approaching</b> it closer and closer:</p>
<div class="example">
<h3>Example Continued:</h3>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<td class="large">x</td>
<td style="width:30px;">&nbsp;</td>
<td class="large"><span class="intbl"> <em>(x<sup>2</sup> 1)</em> <strong>(x 1)</strong> </span></td>
</tr>
<tr style="text-align:right;">
<td>0.5</td>
<td>&nbsp;</td>
<td>1.50000</td>
</tr>
<tr style="text-align:right;">
<td>0.9</td>
<td>&nbsp;</td>
<td>1.90000</td>
</tr>
<tr style="text-align:right;">
<td>0.99</td>
<td>&nbsp;</td>
<td>1.99000</td>
</tr>
<tr style="text-align:right;">
<td>0.999</td>
<td>&nbsp;</td>
<td>1.99900</td>
</tr>
<tr style="text-align:right;">
<td>0.9999</td>
<td>&nbsp;</td>
<td>1.99990</td>
</tr>
<tr style="text-align:right;">
<td>0.99999</td>
<td>&nbsp;</td>
<td>1.99999</td>
</tr>
<tr style="text-align:right;">
<td>...</td>
<td>&nbsp;</td>
<td>...</td>
</tr>
</tbody></table>
</div>
<p>Now we see that as x gets close to 1, then <span class="intbl"> <em>(x<sup>2</sup>1)</em> <strong>(x1)</strong> </span> gets <b>close to 2</b></p>
</div>
<p>We are now faced with an interesting situation:</p>
<ul>
<li>When x=1 we don't know the answer (it is <b>indeterminate</b>)</li>
<li>But we can see that it is <b>going to be 2</b></li>
</ul>
<p>We want to give the answer "2" but can't, so instead mathematicians say exactly what is going on by using the special word "limit"</p>
<p class="center large">The <b>limit</b> of <span class="intbl"> <em>(x<sup>2</sup>1)</em> <strong>(x1)</strong> </span> as x approaches 1 is<b> 2</b></p>
<p>And it is written in symbols as:</p>
<div class="center large"><span class="lim"><em>lim</em><strong>x→1</strong></span> <span class="intbl"><em>x<sup>2</sup>1</em><strong>x1</strong></span> = 2</div>
<!-- LIM[x-1] x^2~-1/x-1 = 2 -->
<p>So it is a special way of saying,<i> "ignoring what happens when we get there, but as we get closer and closer the answer gets closer and closer to 2"</i></p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:right;">
<p>As a graph it looks like this:</p>
<p>So, in truth, we <b>cannot say what the value at x=1 is.</b></p>
<p>But we <b>can</b> say that as we approach 1, <b>the limit is 2.</b></p></td>
<td style="text-align:right;">&nbsp;</td>
<td><img src="images/graph-x2-1-x-1.svg" alt="graph hole" height="147" width="137"></td>
</tr>
</tbody></table>
<h2>More Formal</h2>
<p>But instead of saying a limit equals some value because it <b>looked like it was going to</b>, we can have a more formal definition.</p>
<p>So let's start with the general idea.</p>
<h2>From English to Mathematics</h2>
<p>Let's say it in English first:</p>
<p class="center large">"f(x) gets close to <i>some limit</i> as x gets close to some value"</p>
<p>When we call the Limit "L", and the value that x gets close to "a" we can say</p>
<p class="center large">"f(x) gets close to L as x gets close to a"</p>
<p class="center large"><img src="images/limit-idea.svg" alt="limit idea: f(x) goes to L as x goes to a" height="27" width="314"></p>
<h2>Calculating "Close"</h2>
<p>Now, what is a mathematical way of saying "close" ... could we subtract one value from the other?</p>
<div class="example">
<p>Example 1: 4.01 4 = 0.01 &nbsp; &nbsp; (that looks good)<br>
Example 2: 3.8 4 = 0.2 &nbsp; &nbsp;&nbsp; (<b>negatively</b> close?)</p>
</div>
<p>So how do we deal with the negatives?&nbsp; We don't care about positive or negative, we just want to know how far ... which is the <a href="../number-line.html#absolute">absolute value</a>.</p>
<p class="center large">"How Close" = |ab|</p>
<div class="example">
<p>Example 1: |4.014| = 0.01 <img src="../images/style/yes.svg" alt="yes" height="30" width="30"><br>
Example 2: |3.84| = 0.2 <img src="../images/style/yes.svg" alt="yes" height="30" width="30"></p>
</div>
<p>And when |ab| is small we know we are close, so we write:</p>
<p class="center large">"|f(x)L| is small when |xa| is small"</p>
<p>And this animation shows what happens with the function</p>
<p class="center large">f(x) = <span class="intbl"> <em>(x<sup>2</sup>1)</em> <strong>(x1)</strong> </span></p>
<div class="script" style="height: 400px;">
images/limit-lines.js
</div>
<p class="center">f(x) approaches L=2 as x approaches a=1,<br>
so |f(x)2| is small when |x1| is small.</p>
<h2>Delta and Epsilon</h2>
<p>But "small" is still English and not "Mathematical-ish".</p>
<p>Let's choose two values <b>to be smaller than</b>:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><span class="del">δ</span></td>
<td style="width:20px;">&nbsp;</td>
<td>that |xa| must be smaller than</td>
</tr>
<tr>
<td><span class="eps">ε</span></td>
<td>&nbsp;</td>
<td> that |f(x)L| must be smaller than</td>
</tr>
</tbody></table>
<p class="center"><i>Note: those two Greek letters (δ is <i>"delta"</i> and ε is <i>"epsilon")</i> are<br>
so often used we get the phrase "<b>delta-epsilon</b>"</i></p>
<p>And we have:</p>
<p class="center large">|f(x)L|&lt;<span class="eps">ε</span> when |xa|&lt;<span class="del">δ</span></p>
<p><b>That actually says it!</b> So if you understand that you understand limits ...</p>
<p>... but to be <b>absolutely precise</b> we need to add these conditions:</p>
<ul>
<li>it is true for any <span class="eps">ε</span>&gt;0</li>
<li><span class="del">δ</span> exists, and is &gt;0</li>
<li>x is <b>not equal to</b> a, meaning 0&lt;|xa|</li>
</ul>
<p>And this is what we get:</p>
<div class="def">
<p class="center large">For any <span class="eps">ε</span>&gt;0, there is a <span class="del">δ</span>&gt;0 so that |f(x)L|&lt;<span class="eps">ε</span> when 0&lt;|xa|&lt;<span class="del">δ</span></p>
</div>
<p>That is the formal definition. It actually looks pretty scary, doesn't it?</p>
<p>But in essence it says something simple:</p>
<p class="center"><i><b>f(x) gets close to L</b></i> when <b><i>x gets close to a</i></b></p>
<h2>How to Use it in a Proof</h2>
<p>To use this definition in a proof, we want to go</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td style="width:150px;">From:</td>
<td>&nbsp;</td>
<td style="width:150px;">To:</td>
</tr>
<tr>
<td class="large" align="center" width="150">0&lt;|xa|&lt;<span class="del">δ</span></td>
<td class="large" align="center"><img src="../images/style/right-arrow.gif" alt="right arrow" height="46" width="46"></td>
<td class="large" align="center" width="150">|f(x)L|&lt;<span class="eps">ε</span></td>
</tr>
</tbody></table>
<p>This usually means finding a formula for <span class="del">δ</span> (in terms of <span class="eps">ε</span>) that works.</p>
<p>How do we find such a formula?</p>
<p class="center"><span class="large">Guess and Test!</span></p>
<p>That's right, we can:</p>
<ol>
<li>Play around till we find a formula that <b>might</b> work</li>
<li><b>Test</b> to see if that formula does work</li>
</ol>
<h2>Example: Let's try to show that</h2>
<div class="center large"><span class="lim"><em>lim</em><strong>x→3</strong></span> 2x+4 = 10</div>
<p>Using the letters we talked about above:</p>
<ul>
<li>The value that x approaches, "a", is 3</li>
<li>The Limit "L" is 10</li>
</ul>
<p>So we want to know how we go from:</p>
<p class="center large">0&lt;|x3|&lt;<span class="del">δ </span><br>
to<br>
|(2x+4)10|&lt;<span class="eps">ε</span></p>
<h3>Step 1: Play around till you find a formula that <b>might</b> work</h3>
<div class="tbl">
<div class="row">
<span class="lt">Start with:</span>
<span class="rt">|(2x+4)10| &lt; <span class="eps">ε</span></span>
</div>
<div class="row">
<span class="lt">Simplify:</span>
<span class="rt">|2x6| &lt; <span class="eps">ε</span></span>
</div>
<div class="row">
<span class="lt">Move 2 outside ||:</span>
<span class="rt">2|x3| &lt; <span class="eps">ε</span></span>
</div>
<div class="row">
<span class="lt">Divide both sides by 2:</span>
<span class="rt">|x3| &lt; <span class="eps">ε</span>/2</span>
</div>
</div>
<p>So we can now guess that <b><span class="del">δ</span>=<span class="eps">ε</span>/2</b> might work</p>
<h3>Step 2: <b>Test</b> to see if that formula works.</h3>
<p>So, can we get from <b>0&lt;|x3|&lt;<span class="del">δ</span></b> to <b>|(2x+4)10|&lt;<span class="eps">ε</span></b> ... ?</p>
<p>Let's see ...</p>
<div class="tbl">
<div class="row">
<span class="lt">Start with:</span>
<span class="rt">0 &lt; |x3| &lt; <span class="del">δ</span></span>
</div>
<div class="row">
<span class="lt">Replace <span class="del">δ</span> with <span class="eps">ε</span>/2:</span>
<span class="rt">0 &lt; |x3| &lt; <span class="eps">ε</span>/2</span>
</div>
<div class="row">
<span class="lt">Multiply all by 2:</span>
<span class="rt">0 &lt; 2|x3| &lt; <span class="eps">ε</span></span>
</div>
<div class="row">
<span class="lt">Move 2 inside the ||:</span>
<span class="rt">0 &lt; |2x6| &lt; <span class="eps">ε</span></span>
</div>
<div class="row">
<span class="lt">Replace "6" with "+410":</span>
<span class="rt">0 &lt; |(2x+4)10| &lt; <span class="eps">ε</span></span>
</div>
</div>
<p>Yes! We can go from <b>0&lt;|x3|&lt;<span class="del">δ</span></b> to <b>|(2x+4)10|&lt;<span class="eps">ε</span></b> by choosing <span class="del">δ</span>=<span class="eps">ε</span>/2</p>
<p class="center large">DONE!</p>
<p>We have seen then that given <span class="eps">ε</span> we can find a <span class="del">δ</span>, so it is true that:</p>
<p class="center">For any<span class="eps"> ε</span>, there is a <span class="del">δ</span> so that |f(x)L|&lt;<span class="eps">ε</span> when 0&lt;|xa|&lt;<span class="del">δ</span></p>
<p>And we have proved that</p>
<div class="center large"><span class="lim"><em>lim</em><strong>x→3</strong></span> 2x+4 = 10</div>
<!-- LIM[x-3] 2x+4 = 10 -->
<h2>Conclusion</h2>
<p>That was a fairly simple proof, but it hopefully explains the strange "there is a ..." wording, and it does show a good way of approaching these kind of proofs.</p>
<p>&nbsp;</p>
<div class="related">
<a href="limits.html">Introduction to Limits</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/limits-formal.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:48:57 GMT -->
</html>