new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
217 lines
15 KiB
HTML
217 lines
15 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-trig-proof.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:10 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
|
||
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Derivatives of the Trigonometric Functions</title>
|
||
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
|
||
<style>
|
||
.lim {
|
||
display: inline-table;
|
||
text-align: center;
|
||
vertical-align: middle;
|
||
margin: 0 4px 0 2px;
|
||
border-collapse: collapse;
|
||
}
|
||
.lim em {
|
||
display: table-row;
|
||
text-align: center;
|
||
font-style: inherit;
|
||
}
|
||
.lim strong {
|
||
display: table-row;
|
||
text-align: center;
|
||
font-weight: inherit;
|
||
font-size: 80%;
|
||
line-height: 9px;
|
||
}
|
||
</style>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js"></script>
|
||
<script>document.write(gTagHTML())</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 class="center">Proof of the Derivatives of<br>
|
||
sin, cos and tan</h1>
|
||
|
||
<p class="center">The three most useful derivatives in trigonometry are:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> sin(x) = cos(x)</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> cos(x) = −sin(x)</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> tan(x) = sec<sup>2</sup>(x)</p>
|
||
Did they just drop out of the sky? Can we prove them somehow?
|
||
|
||
|
||
<h2>Proving the Derivative of Sine</h2>
|
||
<p>We need to go back, right back to first principles, the basic formula for derivatives:</p>
|
||
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> = <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>f(x+Δx)−f(x)</em><strong>Δx</strong></span></p>
|
||
<p>Pop in sin(x):</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>sin(x+Δx)−sin(x)</em><strong>Δx</strong></span></p>
|
||
<p>We can then use this <a href="../algebra/trigonometric-identities.html">trigonometric identity</a>: sin(A+B) = sin(A)cos(B) + cos(A)sin(B) to get:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>sin(x)cos(Δx) + cos(x)sin(Δx) − sin(x)</em><strong>Δx</strong></span></p>
|
||
|
||
<p>Regroup:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>sin(x)(cos(Δx)−1) + cos(x)sin(Δx)</em><strong>Δx</strong></span></p>
|
||
<p>Split into two limits:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>sin(x)(cos(Δx)−1)</em><strong>Δx</strong></span> + <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em>cos(x)sin(Δx)</em><strong>Δx</strong></span></p>
|
||
<p>And we can bring sin(x) and cos(x) outside the limits because they are functions of x not Δx</p>
|
||
<p class="center large">sin(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(Δx)−1</em><strong>Δx</strong></span> + cos(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em> sin(Δx)</em><strong>Δx</strong></span></p>
|
||
<p> </p>
|
||
<p>Now all we have to do is evaluate those two little limits. Easy, right? Ha!</p>
|
||
<h2>Limit of <span class="intbl"><em>sin(θ)</em><strong>θ</strong></span></h2>
|
||
<p>Starting with</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span> <span class="intbl"><em>sin(θ)</em><strong>θ</strong></span></p>
|
||
<p>with the help of some geometry:</p>
|
||
<p class="center"><img src="images/derivatives-trig1.svg" alt="circle with radius, angle and tangent"></p>
|
||
<p>We can look at areas:</p>
|
||
<p class="center larger">Area of triangle AOB <b><</b> Area of sector AOB <b><</b> Area of triangle AOC</p>
|
||
<p class="center larger"><span class="intbl"><em>1</em><strong>2</strong></span>r<sup>2</sup> sin(θ) <b><</b> <span class="intbl"><em>1</em><strong>2</strong></span>r<sup>2</sup> θ <b><</b> <span class="intbl"><em>1</em><strong>2</strong></span>r<sup>2</sup> tan(θ)</p>
|
||
<p>Divide all terms by <span class="intbl"><em>1</em><strong>2</strong></span>r<sup>2</sup> sin(θ)</p>
|
||
<p class="center large">1 < <span class="intbl"><em>θ</em><strong>sin(θ)</strong></span> < <span class="intbl"><em>1</em><strong>cos(θ)</strong></span></p>
|
||
<p>Take the reciprocals:</p>
|
||
<p class="center large">1 > <span class="intbl"><em>sin(θ)</em><strong>θ </strong></span> > cos(θ)</p>
|
||
<p>Now as θ→0 then cos(θ)→1</p>
|
||
<p class="center larger">So <span class="intbl"><em>sin(θ)</em><strong>θ </strong></span> lies between 1 and something that is tending towards 1</p>
|
||
<p>So as θ→0 then <span class="intbl"><em>sin(θ)</em><strong>θ </strong></span>→1 and so:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span> <span class="intbl"><em>sin(θ)</em><strong>θ</strong></span> = 1</p>
|
||
<p>(Note: we should also prove this is true from the negative side, how about you try with negative values of θ ?)</p>
|
||
<h2>Limit of <span class="intbl"><em>cos(θ)−1</em><strong>θ</strong></span></h2>
|
||
<p>So next we want to find out this one:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span> <span class="intbl"><em>cos(θ)−1</em><strong>θ</strong></span></p>
|
||
<p>When we multiply top and bottom by cos(θ)+1 we get:</p>
|
||
<p class="center large"><span class="intbl"><em>(cos(θ)−1)(cos(θ)+1)</em><strong>θ(cos(θ)+1)</strong></span> = <span class="intbl"><em>cos<sup>2</sup>(θ)−1</em><strong>θ(cos(θ)+1)</strong></span></p>
|
||
<p>Now we use this <a href="../algebra/trigonometric-identities.html">trigonometric identity</a> based on <a href="../pythagoras.html">Pythagoras' Theorem</a>:</p>
|
||
<p class="center large">cos<sup>2</sup>(x) + sin<sup>2</sup>(x) = 1</p>
|
||
<p>Rearranged to this form:</p>
|
||
<p class="center large">cos<sup>2</sup>(x) − 1 = −sin<sup>2</sup>(x)</p>
|
||
<p>And the limit we started with can become:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span> <span class="intbl"><em>−sin<sup>2</sup>(θ)</em><strong>θ(cos(θ)+1)</strong></span></p>
|
||
<p>That looks worse! But is really better because we can turn it into two limits multiplied together:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span><span class="intbl"><em>sin(θ)</em><strong>θ</strong></span> × <span class="lim"><em>lim</em><strong>θ→0</strong></span><span class="intbl"><em>−sin(θ)</em><strong>cos(θ)+1</strong></span></p>
|
||
<p>We know the first limit (we worked it out above), and the second limit doesn't need much work because<b> at θ=0</b> we know directly that <span class="intbl"><em>−sin(0)</em><strong>cos(0)+1</strong></span> = 0, so:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span><span class="intbl"><em>sin(θ)</em><strong>θ</strong></span> × <span class="lim"><em>lim</em><strong>θ→0</strong></span><span class="intbl"><em>−sin(θ)</em><strong>cos(θ)+1</strong></span> = 1 × 0 = 0</p>
|
||
<h2>Putting it Together</h2>
|
||
<p>So what were we trying to do again? Oh that's right, we really wanted to work out this:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = sin(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(Δx)−1</em><strong>Δx</strong></span> + cos(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em> sin(Δx)</em><strong>Δx</strong></span></p>
|
||
<p>We can now put in the values we just worked out and get:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = sin(x) × 0 + cos(x) × 1</p>
|
||
<p>And so (ta da!):</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = cos(x)</p>
|
||
<h2>The Derivative of Cosine</h2>
|
||
<p>Now on to cosine!</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>cos(x) = <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(x+Δx)−cos(x)</em><strong>Δx</strong></span></p>
|
||
<p>This time we will use the <a href="../algebra/trigonometric-identities.html">angle formula</a> <span class="center"><b>cos(A+B) = cos(A)cos(B) − sin(A)sin(B)</b></span>:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(x)cos(Δx) − sin(x)sin(Δx) − cos(x)</em><strong>Δx</strong></span></p>
|
||
<p>Rearrange to:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(x)(cos(Δx)−1) − sin(x)sin(Δx)</em><strong>Δx</strong></span></p>
|
||
<p>Split into two limits:</p>
|
||
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(x)(cos(Δx)−1)</em><strong>Δx</strong></span> − <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em>sin(x)sin(Δx)</em><strong>Δx</strong></span></p>
|
||
<p>We can bring cos(x) and sin(x) outside the limits because they are functions of x not Δx</p>
|
||
<p class="center large">cos(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(Δx)−1</em><strong>Δx</strong></span> − sin(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em> sin(Δx)</em><strong>Δx</strong></span></p>
|
||
<p>And using our knowledge from above:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> cos(x) = cos(x) × 0 − sin(x) × 1</p>
|
||
<p>And so:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> cos(x) = −sin(x)</p>
|
||
<h2>The Derivative of Tangent</h2>
|
||
<p>To find the derivative of tan(x) we can use this <a href="../algebra/trigonometric-identities.html">identity</a>:</p>
|
||
<p class="center large">tan(x) = <span class="intbl"><em>sin(x)</em><strong>cos(x)</strong></span></p>
|
||
<p>So we start with:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = <span class="intbl"><em>d</em><strong>dx</strong></span>(<span class="intbl"><em>sin(x)</em><strong>cos(x)</strong></span>)</p>
|
||
<div class="def">
|
||
<p>Now we can use the <a href="derivatives-rules.html">quotient rule</a> of derivatives:</p>
|
||
<p class="center larger">(<span class="intbl"><em>f</em><strong>g</strong></span>)’ = <span class="intbl"><em>gf’ − fg’</em><strong>g<sup>2</sup></strong></span></p>
|
||
</div>
|
||
<p>And we get:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = <span class="intbl"><em>cos(x) × cos(x) − sin(x) × −sin(x)</em><strong>cos<sup>2</sup>(x)</strong></span></p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = <span class="intbl"><em>cos<sup>2</sup>(x) + sin<sup>2</sup>(x)</em><strong>cos<sup>2</sup>(x)</strong></span></p>
|
||
<p>Then use this identity:</p>
|
||
|
||
<p class="center larger">cos<sup>2</sup>(x) + sin<sup>2</sup>(x) = 1</p>
|
||
|
||
<p>To get</p>
|
||
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) =<span class="intbl"><em>1</em><strong>cos<sup>2</sup>(x)</strong></span></p>
|
||
<p>Done!</p>
|
||
<p>But most people like to use the fact that cos = <span class="intbl"><em>1</em><strong>sec</strong></span> to get:</p>
|
||
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = sec<sup>2</sup>(x)</p>
|
||
|
||
<p>Note: we can also do this:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = <span class="intbl"><em>cos<sup>2</sup>(x) + sin<sup>2</sup>(x)</em><strong>cos<sup>2</sup>(x)</strong></span></p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = 1 + <span class="intbl"><em> sin<sup>2</sup>(x)</em><strong>cos<sup>2</sup>(x)</strong></span> = 1 + tan<sup>2</sup>(x)</p>
|
||
<p>(And, yes, 1 + tan<sup>2</sup>(x) = sec<sup>2</sup>(x) anyway, see <a href="../algebra/trig-magic-hexagon.html">Magic Hexagon</a> )</p>
|
||
<p class="center"> </p>
|
||
<h2>Taylor Series</h2>
|
||
<p>Just on a fun side note, we can use the <a href="../algebra/taylor-series.html">Taylor Series</a> expansions and differentiate term by term.</p>
|
||
<div class="example">
|
||
<h3>Example: sin(x) and cos(x)</h3>
|
||
<p>The Taylor Series expansion for sin(x) is</p>
|
||
<p class="center large">sin(x) = x − <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span> + <span class="intbl"><em>x<sup>5</sup></em><strong>5!</strong></span> − ...</p>
|
||
<p>Differentiate term by term:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> sin(x) = 1 − <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> − ...</p>
|
||
<p>Which perfectly matches the Taylor Series expansion for cos(x)</p>
|
||
<p class="center large">cos(x) = 1 − <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> − ...</p>
|
||
<p> </p>
|
||
<p>Let's also differentiate <b>that</b> term by term:</p>
|
||
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> cos(x) = 0 − x + <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span><strong> </strong>− ...</p>
|
||
<p>Which is the <b>negative</b> of the Taylor Series expansion for sin(x) we started with!</p>
|
||
</div>
|
||
<p>But this is "circular reasoning" because the original expansion of the Taylor Series already use the rules "the derivative of sin(x) is cos(x)" and "the derivative of cos(x) is −sin(x)".</p>
|
||
<p> </p>
|
||
|
||
<div class="related">
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</body><!-- #EndTemplate -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-trig-proof.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:11 GMT -->
|
||
</html> |