Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

229 lines
8.0 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-dy-dx.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:01 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Derivatives as dy/dx</title>
<script language="JavaScript" type="text/javascript">Author='Khalid Ghafoor and Rod Pierce';</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Derivatives as dy/dx</h1>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/slope-dy-dx.svg" alt="slope delta y / delta x"></p>
<p>&nbsp;</p>
<p>Derivatives are all about <b>change</b> ...</p>
<div class="indent50px">... they show how fast something is changing (called the <b>rate of change</b>) at any point.</div>
<p>&nbsp;</p>
<p>In <a href="derivatives-introduction.html">Introduction to Derivatives</a> <i>(please read it first!)</i> we looked at how to do a derivative using <b>differences</b> and <b>limits</b>.</p>
<p>Here we look at doing the same thing but using the "dy/dx" notation (also called <i>Leibniz's notation</i>) instead of limits.</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/slope-dy-dx2.svg" alt="slope delta x and delta y"></p>
<p>&nbsp;</p>
<p>We start by calling the function "y":</p>
<p class="center large">y = f(x)</p>
<h2>1. Add Δx</h2>
<p>When x increases by Δx, then y increases by Δy :</p>
<p class="center larger">y + Δy = f(x + Δx)</p>
<h2>2. Subtract the Two Formulas</h2>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>From:</td>
<td>&nbsp;</td>
<td class="large" align="center">y + Δy = f(x + Δx) </td>
</tr>
<tr>
<td>Subtract:</td>
<td>&nbsp;</td>
<td class="large" align="center">y = f(x) </td>
</tr>
<tr>
<td>To Get:</td>
<td>&nbsp;</td>
<td class="large" style="border-top: 1px solid black;" align="center">&nbsp; y + Δy y = f(x + Δx) f(x) </td>
</tr>
<tr>
<td>&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>Simplify:</td>
<td>&nbsp;</td>
<td class="larger" align="center">Δy = f(x + Δx) f(x) </td>
</tr>
</tbody></table>
<h2>3. Rate of Change</h2>
<p>To work out how fast (called the <b>rate of change</b>) we <b>divide by Δx</b>:</p>
<p class="center larger"><span class="intbl"><em>Δy</em><strong>Δx</strong></span> = <span class="intbl"><em>f(x + Δx) f(x)</em><strong>Δx</strong></span></p>
<h2>4. Reduce Δx close to 0</h2>
<p>We can't let Δx become 0 (because that would be dividing by 0), but we can make it <b>head towards zero</b> and call it "dx":</p>
<p class="center large">Δx <img src="../images/style/right-arrow.gif" alt="right arrow" align="absmiddle" height="46" width="46"> dx</p>
<p>You can also think of "dx" as being <b>infinitesimal</b>, or infinitely small.</p>
<p>Likewise Δy becomes very small and we call it "dy", to give us:</p>
<p class="center larger"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = <span class="intbl">
<em>f(x + dx) f(x)</em>
<strong>dx</strong>
</span></p>
<h2>Try It On A Function</h2>
<p>Let's try f(x) = x<sup>2</sup></p>
<table align="center" cellpadding="5" border="0">
<tbody>
<tr>
<td><span class="large"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span></span></td>
<td><span class="large">= <span class="intbl">
<em>f(x + dx) f(x)</em>
<strong>dx</strong>
</span></span></td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td><span class="large">= <span class="intbl">
<em>(x + dx)<sup>2</sup> x<sup>2</sup></em>
<strong>dx</strong>
</span></span></td>
<td>&nbsp;</td>
<td>f(x) = x<sup>2</sup></td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="white-space:nowrap"><span class="large">= <span class="intbl">
<em>x<sup>2</sup> + 2x(dx) + (dx)<sup>2</sup> x<sup>2</sup></em>
<strong>dx</strong>
</span></span></td>
<td>&nbsp;</td>
<td>Expand (x+dx)<sup>2</sup></td>
</tr>
<tr>
<td>&nbsp;</td>
<td><span class="large">= <span class="intbl">
<em>2x(dx) + (dx)<sup>2</sup></em>
<strong>dx</strong>
</span></span></td>
<td>&nbsp;</td>
<td>x<sup>2</sup>x<sup>2</sup>=0</td>
</tr>
<tr>
<td>&nbsp;</td>
<td><span class="large">= 2x + dx </span></td>
<td>&nbsp;</td>
<td>Simplify fraction</td>
</tr>
<tr>
<td>&nbsp;</td>
<td><span class="large">= 2x</span></td>
<td>&nbsp;</td>
<td>dx goes towards 0</td>
</tr>
</tbody></table>
<p>So the derivative of <b>x<sup>2</sup></b> is <b>2x</b></p>
<p>&nbsp;</p>
<div class="fun">
<h3>Why don't you try it on f(x) = x<sup>3</sup> ?</h3>
<table align="center" cellpadding="5" border="0">
<tbody>
<tr>
<td><span class="large"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span></span></td>
<td><span class="large">= <span class="intbl">
<em>f(x + dx) f(x)</em>
<strong>dx</strong>
</span></span></td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td><span class="large">= <span class="intbl">
<em>(x + dx)<sup>3</sup> x<sup>3</sup></em>
<strong>dx</strong>
</span></span></td>
<td>&nbsp;</td>
<td>f(x) = x<sup>3</sup></td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="white-space:nowrap"><span class="large">= <span class="intbl">
<em>x<sup>3</sup> + ... (your turn!)</em>
<strong>dx</strong>
</span></span></td>
<td>&nbsp;</td>
<td>Expand (x+dx)<sup>3</sup></td>
</tr>
</tbody></table>
<p>What derivative do <i>you</i> get?</p>
</div>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="related">
<a href="index.html">Calculus Index</a>
<a href="limits.html">Introduction to Limits</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-dy-dx.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:01 GMT -->
</html>