lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/systems-linear-quadratic-equations.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

317 lines
13 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/systems-linear-quadratic-equations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:38 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Systems of Linear and Quadratic Equations</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents."><!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Systems of Linear and Quadratic Equations</h1>
<p>&nbsp;</p>
<div class="simple">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td bgcolor="#eef"><img src="images/linear-quadratic-a.svg" alt="linear " height="205" width="198"></td>
<td><span class="center">A <a href="linear-equations.html">Linear Equation</a> is an <b>equation</b> of a <b>line</b>.</span></td>
</tr>
<tr>
<td bgcolor="#eef"><img src="images/linear-quadratic-b.svg" alt="quadratic" height="205" width="198"></td>
<td>A <a href="quadratic-equation.html">Quadratic Equation</a> is the equation of a <a href="../geometry/parabola.html">parabola</a><br>
and has at least one variable squared
(such as x<sup>2</sup>)<br>
</td>
</tr>
<tr>
<td bgcolor="#eef"><img src="images/linear-quadratic-c.svg" alt="linear and quadratic" height="205" width="198"></td>
<td>And together they form a <b>System</b><br>
of a Linear and a Quadratic Equation</td>
</tr>
</tbody></table>
</div>
<p>&nbsp;</p>
<p>A <b>System</b> of those two equations can be solved (find where they intersect), either:</p>
<ul>
<li><b>Graphically</b> (by plotting them both on the <a href="../data/function-grapher.html">Function Grapher</a> and zooming in)</li>
<li>or using <b>Algebra</b></li>
</ul>
<h2>How to Solve using Algebra</h2>
<ul>
<li>Make both equations into "y =" format</li>
<li>Set them equal to each other</li>
<li>Simplify into "= 0" format (like a standard Quadratic Equation)</li>
<li>Solve the Quadratic Equation!</li>
<li>Use the linear equation to calculate matching "y" values, so we get (x,y) points as answers</li>
</ul>
<p>An example will help:</p>
<div class="example">
<h3>Example: Solve these two equations:</h3>
<ul>
<li>y = x<sup>2</sup> - 5x + 7</li>
<li>y = 2x + 1</li>
</ul>
<p>&nbsp;</p>
<p class="larger">Make both equations into "y=" format:</p>
<p>They are both in "y=" format, so go straight to next step</p>
<p>&nbsp;</p>
<p class="larger">Set them equal to each other</p>
<div class="so">x<sup>2</sup> - 5x + 7 = 2x + 1 </div>
<p>&nbsp;</p>
<p class="larger">Simplify into "= 0" format (like a standard Quadratic Equation)</p>
<div class="so">Subtract 2x from both sides: x<sup>2</sup> - 7x + 7 = 1</div>
<div class="so">Subtract 1 from both sides: x<sup>2</sup> - 7x + 6 = 0 </div>
<p>&nbsp;</p>
<p class="larger">Solve the Quadratic Equation!</p>
<p>(The hardest part for me)</p>
<p>You can read how to <a href="quadratic-equation.html">solve Quadratic Equations</a>, but here we will <a href="factoring-quadratics.html">factor the Quadratic Equation</a>:</p>
<div class="so">Start with: <b>x<sup>2</sup> - 7x + 6 = 0</b></div>
<div class="so">Rewrite -7x as -x-6x: <b>x<sup>2</sup> - x - 6x + 6 = 0</b></div>
<div class="so">Then: <b>x(x-1) - 6(x-1) = 0</b></div>
<div class="so">Then: <b>(x-1)(x-6) = 0</b></div>
<p style="float:right; margin: 10px;"><img src="images/linear-quadratic-1.gif" alt="linear and quadratic" height="226" width="120"></p>
<p>Which gives us the solutions <b>x=1</b> and <b>x=6</b></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p class="larger">Use the linear equation to calculate matching "y" values, so we get (x,y) points as answers</p>
<p>The matching y values are (also see Graph):</p>
<ul>
<li>for x=<b>1</b>: y = 2x+1 = <b>3</b></li>
<li>for x=<b>6</b>: y = 2x+1 = <b>13</b></li>
</ul>
<p>&nbsp;</p>
<p class="center">Our solution: the two points are <b>(1,3)</b> and <b>(6,13)</b></p>
<div class="example2"></div>
</div>
<p>I think of it as three stages:</p>
<div class="center80">
<p class="center">Combine into Quadratic Equation ⇒ Solve the Quadratic ⇒ Calculate the points</p>
</div>
<h2>Solutions</h2>
<p>There are three possible cases:</p>
<ul>
<li><b>No</b> real solution (happens when they never intersect)</li>
<li><b>One</b> real solution (when the straight line just touches the quadratic)</li>
<li><b>Two</b> real solutions (like the example above)</li>
</ul>
<p class="center"><img src="images/linear-quadratic-2.svg" alt="linear and quadratic different intersections" height="228" width="563"></p>
<p>Time for another example!</p>
<div class="example">
<h3>Example: Solve these two equations:</h3>
<ul>
<li>y - x<sup>2</sup> = 7 - 5x</li>
<li>4y - 8x = -21</li>
</ul>
<p>&nbsp;</p>
<p class="larger">Make both equations into "y=" format:</p>
<p>First equation is: y - x<sup>2</sup> = 7 - 5x</p>
<div class="so">Add x<sup>2</sup> to both sides: <b>y = x<sup>2</sup> + 7 - 5x</b></div>
<p>Second equation is: 4y - 8x = -21</p>
<div class="so">Add 8x to both sides: 4y = 8x - 21</div>
<div class="so">Divide all by 4: <b>y = 2x - 5.25</b></div>
<p>&nbsp;</p>
<p class="larger">Set them equal to each other</p>
<div class="so">x<sup>2</sup> - 5x + 7 = 2x - 5.25</div>
<p>&nbsp;</p>
<p class="larger">Simplify into "= 0" format (like a standard Quadratic Equation)</p>
<div class="so">Subtract 2x from both sides: x<sup>2</sup> - 7x + 7 = -5.25</div>
<div class="so">Add 5.25 to both sides: x<sup>2</sup> - 7x + 12.25 = 0 </div>
<p>&nbsp;</p>
<p class="larger">Solve the Quadratic Equation!</p>
<p>Using the Quadratic Formula from <a href="quadratic-equation.html"> Quadratic Equations</a>:</p>
<p style="float:right; margin: 10px;">&nbsp;</p>
<p style="float:right; margin: 10px;"><img src="images/linear-quadratic-3.gif" alt="linear and quadratic one intersection" height="201" width="145"></p>
<ul>
<li>x = [ -b ± √(b<sup>2</sup>-4ac) ] / 2a</li>
<li>x = [ 7 ± √((-7)<sup>2</sup>-4×1×12.25) ] / 2×1</li>
<li>x = [ 7 ± √(49-49) ] / 2</li>
<li>x = [ 7 ± √0 ] / 2</li>
<li><b>x = 3.5</b></li>
</ul>
<p>Just one solution! (The "discriminant" is 0)</p>
<p>&nbsp;</p>
<p class="larger">Use the linear equation to calculate matching "y" values, so we get (x,y) points as answers</p>
<p>The matching y value is:</p>
<ul>
<li>for x=<b>3.5</b>: y = 2x-5.25 = <b>1.75</b></li>
</ul>
<p>&nbsp;</p>
<p class="center">Our solution:<b> (3.5,1.75)</b></p>
<div class="example2"></div>
</div>
<p>&nbsp;</p>
<div class="example">
<img style="float:right; margin: 0 0 5px 10px;" src="images/cannon.jpg" alt="Cannon">
<h3>Real World Example</h3>
<p class="larger">Kaboom!</p>
<p>The cannon ball flies through the air, following a parabola: </p>
<p><span class="larger">y = 2 + 0.12x - 0.002x<sup>2</sup></span></p>
<p>The land slopes upward: <span class="larger">y = 0.15x </span></p>
<p>Where does the cannon ball land?</p>
<p class="center"><img src="images/linear-quadratic-5.gif" alt="linear quadratic cannon shot" height="235" width="471"></p>
<p>&nbsp;</p>
<p>Both equations are already in the "y =" format, so set them equal to each other:</p>
<div class="so">0.15x = 2 + 0.12x - 0.002x<sup>2</sup></div>
<p>Simplify into "= 0" format:</p>
<div class="so">Bring all terms to left: 0.002x<sup>2</sup> + 0.15x - 0.12x - 2 = 0 </div>
<div class="so">Simplify: 0.002x<sup>2</sup> + 0.03x - 2 = 0 </div>
<div class="so">Multiply by 500: x<sup>2</sup> + 15x - 1000 = 0</div>
<p>Solve the Quadratic Equation:</p>
<div class="so">Split 15x into -25x+40x: x<sup>2</sup> -25x + 40x - 1000 = 0</div>
<div class="so">Then: x(x-25) + 40(x-25) = 0</div>
<div class="so">Then: (x+40)(x-25) = 0</div>
<div class="so">x = -40 or 25</div>
<p>The negative answer can be ignored, so <b>x = 25</b></p>
<p>Use the linear equation to calculate matching "y" value:</p>
<div class="so"> y = 0.15 x 25 = 3.75</div>
<p>&nbsp;</p>
<p>So the cannonball impacts the slope at <b>(25, 3.75)</b></p>
<p>&nbsp;</p>
<p>You can also find the answer graphically by using the <a href="../data/function-grapher228f.html?func1=2+0.12x-0.002x%5E2&amp;func2=0.15x&amp;xmin=-48&amp;xmax=48&amp;ymin=-32&amp;ymax=32">Function Grapher</a>:</p>
<p class="center"><img src="images/linear-quadratic-6.gif" alt="linear quadratic graph" height="101" width="230"></p>
</div>
<h2>Both Variables Squared</h2>
<p>Sometimes BOTH terms of the quadratic can be squared:</p>
<div class="example">
<h3>Example: Find the points of intersection of</h3>
<p>The circle <b>x<sup>2</sup> + y<sup>2</sup> = 25</b></p>
<p>And the straight line <b>3y - 2x = 6</b></p>
<p class="center"><img src="images/linear-quadratic-4.gif" alt="line 3y-2x=6 vs circle x^2+y^2=25" height="190" width="203"></p>
<p>First put the line in "y=" format:</p>
<div class="so">Move 2x to right hand side: 3y = 2x + 6</div>
<div class="so">Divide by 3: y = 2x/3 + 2</div>
<p>NOW, Instead of making the circle into "y=" format, we can use <b><a href="substitution.html">substitution</a></b> (replace "y" in the quadratic with the linear expression):</p>
<div class="so">Put y = 2x/3 + 2 into circle equation: x<sup>2</sup> + (2x/3 + 2)<sup>2</sup> = 25 </div>
<div class="so">Expand: x<sup>2</sup> + 4x<sup>2</sup>/9 + 2(2x/3)(2) + 2<sup>2</sup> = 25 </div>
<div class="so">Multiply all by 9: 9x<sup>2</sup> + 4x<sup>2</sup> + 2(2x)(2)(3) + (9)(2<sup>2</sup>) = (9)(25) </div>
<div class="so">Simplify: 13x<sup>2</sup>+ 24x + 36 = 225 </div>
<div class="so">Subtract 225 from both sides: 13x<sup>2</sup>+ 24x - 189 = 0</div>
<p>Now it is in standard Quadratic form, let's solve it:</p>
<div class="so">13x<sup>2</sup>+ 24x - 189 = 0</div>
<div class="so">Split 24x into 63x-39x: 13x<sup>2</sup>+ 63x - 39x - 189 = 0</div>
<div class="so">Then: x(13x + 63) - 3(13x + 63) = 0</div>
<div class="so">Then: (x - 3)(13x + 63) = 0</div>
<div class="so">So: x = 3 or -63/13</div>
<p>&nbsp;</p>
<p>Now work out y-values:</p>
<div class="so"> Substitute x = 3 into linear equation:
<ul>
<li>3y - 6 = 6</li>
<li>3y = 12</li>
<li>y = 4</li>
<li>So one point is <b>(3, 4)</b></li>
</ul>
</div>
<div class="so"> Substitute x = -63/13 into linear equation:
<ul>
<li>3y + 126/13 = 6</li>
<li>y + 42/13 = 2</li>
<li>y = 2 - 42/13 = 26/13 - 42/13 = -16/13</li>
<li>So the other point is <b>(-63/13, -16/13)</b></li>
</ul>
</div>
<p class="center"><img src="images/linear-quadratic-7.gif" alt="line 3y-2x=6 vs circle x^2+y^2=25" height="188" width="265"></p>
</div>
<p>&nbsp;<span class="center"></span></p>
<div class="questions">8184, 8185, 8186, 8187, 8188, 8189, 8190, 8191, 8192, 8193, 8194, 8195, 8196, 8197, 8198</div>
<div class="related"><a href="linear-equations.html">Linear Equations</a>
<a href="quadratic-equation.html">Quadratic Equations</a>
<a href="systems-linear-quadratic-graphical.html">Solving Systems of Linear and Quadratic Equations Graphically</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/systems-linear-quadratic-equations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:02:40 GMT -->
</html>