lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/line-parallel-perpendicular.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

217 lines
10 KiB
HTML

<!doctype html>
<html lang="en"><!-- #BeginTemplate "../Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/line-parallel-perpendicular.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:39 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Finding Parallel and Perpendicular Lines</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Parallel and Perpendicular Lines</h1>
<p align="center">How to use <a href="index.html">Algebra</a> to find <a href="../perpendicular-parallel.html">parallel and perpendicular lines</a>.</p>
<h2>Parallel Lines</h2>
<p>How do we know when two lines are <b>parallel</b>?</p>
<div class="def">
<p class="center large">Their slopes are the same!</p>
</div>
<table border="0" align="center">
<tr>
<td class="larger"><p>The <a href="../geometry/slope.html">slope</a> is the value <b>m</b> in the <a href="../equation_of_line.html">equation of a line</a>:</p>
<p align="center"><span class="largest">y = mx + b</span></p></td>
<td class="larger">&nbsp;</td>
<td><img src="images/y-mxpb-graph.svg" width="120" alt="Slope-Intercept Form" /></td>
</tr>
</table> <p>&nbsp;</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-parallel-ex.gif" alt="graph" width="227" height="192" />
</p>
<h3>Example: </h3>
<p>Find the equation of the line that is:</p>
<ul>
<li>parallel to <b>y = 2x + 1 </b></li>
<li>and passes though the point (5,4)</li>
</ul>
<p>&nbsp;</p>
<p>The slope of <b>y=2x+1 </b>is: <span class="large">2</span></p>
<p><b>The parallel line needs to have the same slope of 2.</b></p>
<p>&nbsp;</p>
<p>We can solve it using the <a href="line-equation-point-slope.html">&quot;point-slope&quot; equation of a line</a>:</p>
<p align="center"><span class="larger">y &minus; y<sub>1</sub> = 2(x &minus; x<sub>1</sub>)</span></p>
<p>And then put in the point (5,4):</p>
<p align="center"><span class="large">y &minus; 4 = 2(x &minus; 5)</span></p>
<p>&nbsp;</p>
<p>And that answer is OK, but let's also put it in <a href="../equation_of_line.html">y = mx + b</a> form:</p>
<p align="center"><span class="larger">y &minus; 4 = 2x &minus; 10</span></p>
<p align="center"><span class="large">y = 2x &minus; 6</span></p>
</div>
<h3>Vertical Lines</h3>
<p>But this does not work for vertical lines ... I explain why at the end.</p>
<h3>Not The Same Line</h3>
<p>Be careful! They may be the <b>same line</b> (but with a different equation), and so are <b>not parallel</b>.</p>
<p>How do we know if they are really the same line? <b>Check their y-intercepts</b> (where they cross the y-axis) as well as their slope:</p>
<div class="example">
<h3>Example: is y = 3x + 2 parallel to y &minus; 2 = 3x ?</h3>
<p>For<b> y = 3x + 2</b>: the slope is 3, and y-intercept is 2</p>
<p>For <b>y &minus; 2 = 3x</b>: the slope is 3, and y-intercept is 2</p>
<p>In fact they are the same line and so are not parallel</p>
</div>
<h2>Perpendicular Lines</h2>
<p>Two lines are Perpendicular when they meet at a right angle (90&deg;).</p>
<p>To find a <span class="center">perpendicular slope:</span></p>
<div class="def">
<p class="center">When one line has a slope of <span class="large">m</span>, a perpendicular line has a slope of <span class="intbl large"><em>&minus;1</em><strong>m</strong></span></p>
</div>
<p>In other words the <b> negative <a href="../reciprocal.html">reciprocal</a></b> </p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-perp-ex2.gif" alt="graph" width="223" height="190" /></p>
<h3>Example: </h3>
<p>Find&nbsp;the&nbsp;equation of the line that is</p>
<ul>
<li>perpendicular to <b>y = &minus;4x + 10 </b></li>
<li>and passes though the point <b>(7,2)</b></li>
</ul>
<p>&nbsp;</p>
<p>The slope of <b>y=&minus;4x+10 </b>is: <span class="large">&minus;4</span></p>
<p>The <b>negative reciprocal</b> of that slope is:</p>
<p class="center large">m = <span class="intbl"><em>&minus;1</em><strong>&minus;4</strong></span> = <span class="intbl"><em>1</em><strong>4</strong></span></p>
<p>So the perpendicular line will have a slope of 1/4:</p>
<p align="center"><span class="larger">y &minus; y<sub>1</sub> = (1/4)(x &minus; x<sub>1</sub>)</span></p>
<p>And now put in the point (7,2):</p>
<p align="center"><span class="large">y &minus; 2 = (1/4)(x &minus; 7)</span></p>
<p>&nbsp;</p>
<p>And that answer is OK, but let's also put it in &quot;y=mx+b&quot; form:</p>
<p align="center"><span class="larger">y &minus; 2 = x/4 &minus; 7/4</span></p>
<p align="center"><span class="large">y = x/4 + 1/4</span></p>
</div>
<h2>Quick Check of Perpendicular</h2>
<p>When we multiply a slope <span class="large">m</span> by its perpendicular slope <span class="intbl large"><em>&minus;1</em><strong>m</strong></span> we get simply <span class="large">&minus;1</span>.</p>
<p>So to quickly check if two lines are perpendicular:</p>
<div class="center80">
<p align="center" class="large">When we multiply their slopes, we get &minus;1</p>
</div>
<p>Like this:</p>
<div class="example">
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/graph-perp-ex.gif" alt="graph vertical line" width="228" height="193" /></p>
<p>Are these two lines perpendicular?</p>
<div class="simple">
<table width="250" border="0" align="center">
<tr>
<td align="center">Line</td>
<td align="center">Slope</td>
</tr>
<tr>
<td align="center" class="larger">y = 2x + 1</td>
<td align="center"><b class="larger">2</b></td>
</tr>
<tr>
<td align="center" class="larger">y = &minus;0.5x + 4</td>
<td align="center"><b class="larger">&minus;0.5</b></td>
</tr>
</table>
</div>
<p>When we multiply the two slopes we get:</p>
<p align="center" class="large">2 &times; (&minus;0.5) = &minus;1 </p>
<p>Yes, we got &minus;1, so they are perpendicular.</p>
</div>
<h2>Vertical Lines</h2>
<p>The previous methods work nicely except for a <b>vertical line</b>:</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/graph-2-points-vertical.gif" alt="graph vertical line" width="148" height="189" /></p>
<p>&nbsp;</p>
<p>In this case the gradient is <b>undefined</b> (as we <a href="../numbers/dividing-by-zero.html">cannot divide by 0</a>):</p>
<p class="center large">m = <span class="intbl"><em>y<sub>A</sub> &minus; y<sub>B</sub></em><strong>x<sub>A</sub> &minus; x<sub>B</sub></strong></span> = <span class="intbl"><em>4 &minus; 1</em><strong>2 &minus; 2</strong></span> = <span class="intbl"><em>3</em><strong>0</strong></span> = undefined</p>
<div style="clear:both"></div>
<p>So just rely on the fact that:</p>
<ul>
<li>a vertical line is parallel to another vertical line.</li>
<li>a vertical line is perpendicular to a horizontal line (and vice versa).</li>
</ul>
<h2>Summary</h2>
<ul>
<li>parallel lines: <b>same</b> slope</li>
<li>perpendicular lines: <b>negative reciprocal</b> slope (&minus;1/m)</li>
</ul>
<p>&nbsp;</p>
<div class="questions">
<script type="text/javascript">getQ(7315, 7355, 7365, 7374, 7375, 7382, 7324, 7364, 7379, 7384);</script>&nbsp;
</div>
<div class="related">
<a href="../equation_of_line.html">Equation of a Straight Line</a>
<a href="../straight-line-graph-calculate.html">Straight Line Graph Calculator</a>
<a href="index.html">Algebra Index</a></div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/line-parallel-perpendicular.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:40 GMT -->
</html>