new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
251 lines
12 KiB
HTML
251 lines
12 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/exponential-growth.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:27 GMT -->
|
||
<head>
|
||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||
|
||
|
||
|
||
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Exponential Growth and Decay</title>
|
||
<script>reSpell=[["meters","metres"]];</script>
|
||
<meta name="description" content="Example: if a population of rabbits doubles every month we would have 2, then 4, then 8, 16, 32, 64, 128, 256, etc!">
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="stylesheet" type="text/css" href="../style3.css">
|
||
<script src="../main3.js"></script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
<div class="bg">
|
||
<div id="stt"></div>
|
||
<div id="hdr"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
|
||
<div id="advText">Advanced</div>
|
||
<div id="gtran">
|
||
<script>document.write(getTrans());</script>
|
||
</div>
|
||
<div id="adTopOuter" class="centerfull noprint">
|
||
<div id="adTop">
|
||
<script>document.write(getAdTop());</script>
|
||
</div>
|
||
</div>
|
||
<div id="adHide">
|
||
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
|
||
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
|
||
<a href="../about-ads.html">About Ads</a></div>
|
||
</div>
|
||
<div id="menuWide" class="menu">
|
||
<script>document.write(getMenu(0));</script>
|
||
</div>
|
||
<div id="linkto">
|
||
<div id="linktort">
|
||
<script>document.write(getLinks());</script>
|
||
</div>
|
||
</div>
|
||
<div id="search" role="search">
|
||
<script>document.write(getSearch());</script>
|
||
</div>
|
||
<div id="menuSlim" class="menu">
|
||
<script>document.write(getMenu(1));</script>
|
||
</div>
|
||
<div id="menuTiny" class="menu">
|
||
<script>document.write(getMenu(2));</script>
|
||
</div>
|
||
<div id="extra"></div>
|
||
</div>
|
||
<div id="content" role="main">
|
||
<!-- #BeginEditable "Body" -->
|
||
<h1 class="center">Exponential Growth and Decay</h1>
|
||
<h3 align="center">Exponential growth can be amazing!</h3>
|
||
<p>The idea: something always grows
|
||
in relation to its <b>current </b>value, such as always doubling.</p>
|
||
<div class="example">
|
||
<h3>Example: If a population of rabbits doubles every month, we would have 2, then 4, then 8, 16, 32, 64, 128, 256, etc!</h3>
|
||
</div>
|
||
<h2>Amazing Tree</h2>
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/tree.jpg" alt="tree" height="240" width="161"></p>
|
||
<p> </p>
|
||
<p>Let us say we have this special tree.</p>
|
||
<p>It grows <a href="../exponent.html">exponentially</a> , following this formula:</p>
|
||
<div class="center80">
|
||
<p class="center large">Height (in mm) = e<sup>x</sup></p>
|
||
</div>
|
||
<p class="center"><i><b>e</b> is <a href="../numbers/e-eulers-number.html">Euler's number</a>, about 2.718</i></p>
|
||
<div style="clear:both"></div>
|
||
<p> </p>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/ex.gif" alt="e^x graph" height="394" width="140"></p>
|
||
<ul>
|
||
<li>At 1 year old it is: <span class="large">e<sup>1 </sup> = 2.7 mm</span> high ... really tiny!</li>
|
||
<li>At 5 years it is: <span class="large">e<sup>5 </sup> = 148 mm</span> high ... as high as a cup</li>
|
||
<li>At 10 years: <span class="large">e<sup>10 </sup> = 22 m</span> high ... as tall as a building</li>
|
||
<li>At 15 years: <span class="large">e<sup>15 </sup> = 3.3 km</span> high ... 10 times the height of the Eiffel Tower</li>
|
||
<li>At 20 years: <span class="large">e<sup>20 </sup> = 485 km</span> high ... up into space!</li>
|
||
</ul>
|
||
<p> </p>
|
||
<p class="center">No tree could ever grow that tall.<br>
|
||
So when people say "it grows exponentially" ... just think what that means.</p>
|
||
<div style="clear:both"></div>
|
||
<h2>Growth and Decay</h2>
|
||
<p>But sometimes things <b>can</b> grow (or the opposite: decay) exponentially, <b><i>at least for a while</i></b>.</p>
|
||
<p>So we have a generally useful formula:</p>
|
||
<div class="def">
|
||
<p class="center large">y(t) = a × e<sup>kt</sup></p>
|
||
<p class="center">Where <b>y(t)</b> = value at time "t"<br>
|
||
<b>a</b> = value at the start<br>
|
||
<b>k</b> = rate of growth (when >0) or decay (when <0)<br>
|
||
<b>t</b> = time</p>
|
||
</div>
|
||
<p> </p>
|
||
<div class="example">
|
||
<h3>Example: 2 months ago you had 3 mice, you now have 18.</h3>
|
||
<div class="example2">
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="images/mice.jpg" alt="Mice" height="135" width="166"></td>
|
||
<td>
|
||
<p>Assuming the growth continues like that</p>
|
||
<ul>
|
||
<li>What is the "k" value?</li>
|
||
<li>How many mice 2 Months from now?</li>
|
||
<li>How many mice 1 Year from now?</li>
|
||
</ul></td>
|
||
</tr>
|
||
</tbody></table>
|
||
</div>
|
||
<p> </p>
|
||
<p>Start with the formula:</p>
|
||
<p class="center larger">y(t) = a × e<sup>kt</sup></p>
|
||
<p>We know <b>a=3</b> mice, <b>t=2</b> months, and right now <b>y(2)=18</b> mice:</p>
|
||
<p class="center"><span class="larger">18 = 3 × e<sup>2k</sup></span></p>
|
||
<p>Now some algebra to solve for <b>k</b>:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Divide both sides by 3:</span><span class="right">6 = e<sup>2k</sup></span></div>
|
||
<div class="row"><span class="left">Take the natural logarithm of both sides:</span><span class="right">ln(6) = ln(e<sup>2k</sup>)</span></div>
|
||
<div class="row"><span class="left"><b>ln(e<sup>x</sup>)=x</b>, so:</span><span class="right">ln(6) = 2k</span></div>
|
||
<div class="row"><span class="left">Swap sides:</span><span class="right">2k = ln(6)</span></div>
|
||
<div class="row"><span class="left">Divide by 2:</span><span class="right"><b>k = ln(6)/2</b></span></div>
|
||
</div>
|
||
<p><i>Notes:</i></p>
|
||
<ul>
|
||
<li><i>The step where we used <b>ln(e<sup>x</sup>)=x</b> is explained at <a href="exponents-logarithms.html">Exponents and Logarithms</a></i>.</li>
|
||
<li><i>we could calculate <b>k ≈ 0.896</b>, but it is best to keep it as <b>k = ln(6)/2</b> until we do our final calculations.</i></li>
|
||
</ul>
|
||
<p> </p>
|
||
<p>We can now put <b>k = ln(6)/2</b> into our formula from before:</p>
|
||
<p class="center larger">y(t) = 3 e<sup>(ln(6)/2)t<b></b></sup></p>
|
||
<p>Now let's calculate the population in 2 more months (at <b>t=4</b> months):</p>
|
||
<p class="center larger">y(<b>4</b>) = 3 e<sup>(ln(6)/2)×<b>4</b></sup> = 108</p>
|
||
<p>And in 1 year from now (<b>t=14</b> months):</p>
|
||
<p class="center"><span class="larger">y(<b>14</b>) = 3 e<sup>(ln(6)/2)×<b>14</b></sup> = 839,808</span></p>
|
||
<p>That's a lot of mice! I hope you will be feeding them properly.</p>
|
||
</div>
|
||
<h2>Exponential Decay</h2>
|
||
<p>Some things "decay" (get smaller) exponentially.</p>
|
||
<div class="example">
|
||
<h3>Example: Atmospheric pressure (the pressure of air around you) decreases as you go higher.</h3>
|
||
<p>It decreases about 12% for every 1000 m: an <b>exponential decay</b>.</p>
|
||
<p>The pressure at sea level is about 1013 hPa (depending on weather).</p>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/mount-everest.jpg" alt="mount everest" height="214" width="243"></p>
|
||
<p> </p>
|
||
<ul>
|
||
<li>Write the formula (with its "k" value),</li>
|
||
<li>Find the pressure on the roof of the Empire State Building (381 m),</li>
|
||
<li>and at the top of Mount Everest (8848 m)</li>
|
||
</ul>
|
||
<p> </p>
|
||
<p>Start with the formula:</p>
|
||
<p class="center larger">y(t) = a × e<sup>kt</sup></p>
|
||
<p>We know</p>
|
||
<ul>
|
||
<li><b>a</b> (the pressure at sea level) = <b>1013</b> hPa</li>
|
||
<li><b>t</b> is in meters (distance, not time, but the formula still works)</li>
|
||
<li><b>y(1000)</b> is a 12% reduction on 1013 hPa = <b>891.44</b> hPa</li>
|
||
</ul>
|
||
<p>So:</p>
|
||
<p class="center"><span class="larger">891.44 = 1013 e<sup>k×1000</sup></span></p>
|
||
<p>Now some algebra to solve for <b>k</b>:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Divide both sides by 1013:</span><span class="right">0.88 = e<sup>1000k</sup></span></div>
|
||
<div class="row"><span class="left">Take the natural logarithm of both sides:</span><span class="right">ln(0.88) = ln(e<sup>1000k</sup>)</span></div>
|
||
<div class="row"><span class="left"><b>ln(e<sup>x</sup>)=x</b>, so:</span><span class="right">ln(0.88) = 1000k</span></div>
|
||
<div class="row"><span class="left">Swap sides:</span><span class="right">1000k = ln(0.88)</span></div>
|
||
<div class="row"><span class="left">Divide by 1000:</span><span class="right"><b>k = ln(0.88)/1000</b></span></div>
|
||
</div>
|
||
<p> </p>
|
||
<p>Now we know "k" we can write<b></b>:</p>
|
||
<p class="center"><span class="larger">y(t) = 1013 e<sup>(ln(0.88)/1000)×t</sup></span></p>
|
||
<p> </p>
|
||
<p>And finally we can calculate the pressure at <b>381 m</b>, and at <b>8848 m</b>:</p>
|
||
<p> </p>
|
||
<p class="center larger">y(<b>381</b>) = 1013 e<sup>(ln(0.88)/1000)×<b>381</b></sup> = 965 hPa</p>
|
||
<p class="center"><span class="larger">y(<b>8848</b>) = 1013 e<sup>(ln(0.88)/1000)×<b>8848</b></sup> = 327 hPa</span></p>
|
||
<p> </p>
|
||
<p>(In fact pressures at Mount Everest are around 337 hPa ... good calculations!)</p>
|
||
</div>
|
||
<h2>Half Life</h2>
|
||
<p>The "half life" is how long it takes for a value to halve with exponential decay.</p>
|
||
<p>Commonly used with radioactive decay, but it has many other applications!</p>
|
||
<div class="example">
|
||
<h3>Example: The half-life of caffeine in your body is about 6 hours. If you had 1 cup of coffee 9 hours ago how much is left in your system?</h3>
|
||
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/coffee.jpg" alt="cup of coffee" height="197" width="239"></p>
|
||
<p>Start with the formula:</p>
|
||
<p class="center larger">y(t) = a × e<sup>kt</sup></p>
|
||
<p>We know:</p>
|
||
<ul>
|
||
<li><b>a</b> (the starting dose) = <b>1</b> cup of coffee!</li>
|
||
<li><b>t</b> is in hours</li>
|
||
<li>at <b>y(6)</b> we have a 50% reduction (because 6 is the half life)</li>
|
||
</ul>
|
||
<p>So:</p>
|
||
<p class="center"><span class="larger">0.5 = 1 cup × e<sup><b>6</b>k</sup></span></p>
|
||
<p>Now some algebra to solve for <b>k</b>:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Take the natural logarithm of both sides:</span><span class="right">ln(0.5) = ln(e<sup>6k</sup>)</span></div>
|
||
<div class="row"><span class="left"><b>ln(e<sup>x</sup>)=x</b>, so:</span><span class="right">ln(0.5) = 6k</span></div>
|
||
<div class="row"><span class="left">Swap sides:</span><span class="right">6k = ln(0.5)</span></div>
|
||
<div class="row"><span class="left">Divide by 6:</span><span class="right"><b>k = ln(0.5)/6</b></span></div>
|
||
</div>
|
||
<p>Now we can write<b></b>:</p>
|
||
<p class="center"><span class="larger">y(t) = 1 e<sup>(ln(0.5)/6)×t</sup></span></p>
|
||
|
||
<p>In <b>6 hours:</b></p>
|
||
|
||
<p class="center larger">y(<b>6</b>) = 1 e<sup>(ln(0.5)/6)×<b>6</b></sup> = 0.5</p>
|
||
<p>Which is correct as 6 hours is the half life</p>
|
||
<p>And in <b>9 hours:</b></p>
|
||
<p class="center larger">y(<b>9</b>) = 1 e<sup>(ln(0.5)/6)×<b>9</b></sup> = 0.35</p>
|
||
|
||
<p>After <b>9</b> hours the amount left in your system is <b>about 0.35</b> of the original amount. Have a nice sleep :)</p>
|
||
|
||
</div>
|
||
<p>Have a play with the <a href="../numbers/half-life-medicine-tool.html">Half Life of Medicine Tool</a> to get a good understanding of this.</p>
|
||
<p> </p>
|
||
<div class="questions">
|
||
<script>getQ(589, 1238, 1239, 2304, 2305, 8089, 8090, 8091, 8092);</script> </div>
|
||
|
||
<div class="related">
|
||
<a href="../exponent.html">Exponents</a>
|
||
<a href="index.html">Algebra Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
</div>
|
||
<div id="adend" class="centerfull noprint">
|
||
<script>document.write(getAdEnd());</script>
|
||
</div>
|
||
<div id="footer" class="centerfull noprint">
|
||
<script>document.write(getFooter());</script>
|
||
</div>
|
||
<div id="copyrt">
|
||
Copyright © 2020 MathsIsFun.com
|
||
</div>
|
||
<script>document.write(getBodyEnd());</script>
|
||
</body>
|
||
<!-- Mirrored from www.mathsisfun.com/algebra/exponential-growth.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:28 GMT -->
|
||
</html> |