lkarch.org/tools/mathisfun/www.mathsisfun.com/sets/functions-operations.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

286 lines
12 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/sets/functions-operations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:18 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Operations with Functions</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Operations with Functions</h1>
<table align="center" width="80%" border="0">
<tbody>
<tr>
<td>
<img src="../images/style/plus.svg" alt="plus" height="" width="">
<img src="../images/style/minus.svg" alt="minus" height="" width="">
<br>
<img src="../images/style/multiply.svg" alt="multiply" height="" width="">
<img src="../images/style/divide.svg" alt="divide" height="" width="">
</td>
<td>
<p>We can add, subtract, multiply and divide functions!</p>
<p>The result is a new function.</p></td>
</tr>
</tbody></table>
<p>Let us try doing those operations on <span class="largest">f(x) </span>and <span class="largest">g(x)</span>:</p>
<table style="border: 0;">
<tbody>
<tr>
<td style="text-align:right;"><img src="../images/style/plus.svg" alt="add" height="" width=""></td>
<td>
<h3>Addition</h3></td>
</tr></tbody></table>
<p>We can add two functions: </p>
<p class="largest" align="center">(f+g)(x) = f(x) + g(x)</p>
<p class="center"><i>Note: we put the <b>f+g</b> inside <b>()</b> to show they both work on <b>x</b>.</i></p>
<div class="example">
<h3>Example: f(x) = 2x+3 and g(x) = x<sup>2</sup></h3>
<p class="center large">(f+g)(x) = (2x+3) + (x<sup>2</sup>) = x<sup>2</sup>+2x+3</p>
</div>
<p>Sometimes we may need to <a href="../algebra/like-terms.html">combine like terms</a>:</p>
<div class="example">
<h3>Example: v(x) = 5x+1, w(x) = 3x-2</h3>
<p class="center large">(v+w)(x) = (5x+1) + (3x-2) = 8x-1</p>
</div>
<p>The only other thing to worry about is the Domain (the set of numbers that go into the function), but we will talk about that later!</p>
<p>&nbsp;</p>
<table>
<tbody>
<tr>
<td style="text-align:right;"><img src="../images/style/minus.svg" alt="Subtract" height="40" width="40"></td>
<td>
<h3>Subtraction</h3></td>
</tr></tbody></table>
<p>We can also subtract two functions:</p>
<p class="largest" align="center">(f-g)(x) = f(x) g(x)</p>
<div class="example">
<h3>Example: f(x) = 2x+3 and g(x) = x<sup>2</sup></h3>
<p class="center large">(f-g)(x) = (2x+3) (x<sup>2</sup>)</p>
</div>
<p>&nbsp;</p>
<table>
<tbody>
<tr>
<td style="text-align:right;"><img src="../images/style/multiply.svg" alt="Multiply" height="40" width="40"></td>
<td>
<h3>Multiplication</h3></td>
</tr></tbody></table>
<p>We can multiply two functions:</p>
<p class="largest" align="center">(f·g)(x) = f(x) · g(x)</p>
<div class="example">
<h3>Example: f(x) = 2x+3 and g(x) = x<sup>2</sup></h3>
<p class="center large">(f<span class="largest">·</span>g)(x) = (2x+3)(x<sup>2</sup>) = 2x<sup>3</sup> + 3x<sup>2</sup></p>
</div>
<p>&nbsp;</p>
<table>
<tbody>
<tr>
<td style="text-align:right;"><img src="../images/style/divide.svg" alt="Divide" height="40" width="40"></td>
<td>
<h3>Division</h3></td>
</tr>
</tbody></table>
<p>And we can divide two functions:</p>
<p class="largest" align="center">(f/g)(x) = f(x) / g(x)</p>
<div class="example">
<h3>Example: f(x) = 2x+3 and g(x) = x<sup>2</sup></h3>
<p class="center large">(f/g)(x) = (2x+3)/x<sup>2</sup></p>
</div>
<h2>Function Composition</h2>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td>There is another special operation called <a href="functions-composition.html">Function Composition</a>,<br>
read that page to find out more!</td>
<td>&nbsp;</td>
<td align="center" nowrap="nowrap"><span class="largest">(g <span style="font-size: 75%;">º</span> f)(x)</span></td>
</tr>
</tbody></table>
<h2>Domains</h2>
<p>It has been easy so far, but now we must consider the <a href="domain-range-codomain.html">Domains</a> of the functions.</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/range-domain-graph.svg" alt="domain and range on a graph" height="167" width="298"></p>
<p>The domain is <b>the set of all the values</b> that go into a function.</p>
<p>The function must work for all values we give it, so it is <b>up to us</b> to make sure we get the domain correct!</p>
<div style="clear:both"></div>
<div class="example">
<h3>Example: the domain for √x (the square root of x)</h3>
<p>We can't have the square root of a negative number (unless we use imaginary numbers, but we aren't doing that here), so we must <b>exclude</b> negative numbers:</p>
<p class="center larger">The Domain of √x is all non-negative Real Numbers</p>
<p>On the Number Line it looks like:</p>
<p class="center"><img src="images/interval-0-on.svg" alt="zero onwards" height="" width=""></p>
<p>Using <a href="set-builder-notation.html">set-builder notation</a> it is written:</p>
<p class="center"><span class="larger">{ x<img src="../images/symbols/member-of.svg" alt="member of" style="vertical-align:middle;" height="" width=""><span class="large"><img src="../images/symbols/set-r.svg" alt="Reals" style="vertical-align:middle;" height="23" width="23"></span> | x ≥ 0}</span></p>
<p class="center"><i>"the set of all x's that are a member of the Real Numbers,<br>
such that x is greater than or equal to zero</i>"</p>
<p>Or using <a href="intervals.html">interval notation</a> it is:</p>
<p class="center larger">[0,+∞)</p>
</div>
<p>It is important to get the Domain right, or we will get bad results!</p>
<p>So how do we work out the new domain after doing an operation?</p>
<h2>How to Work Out the New Domain</h2>
<p>When we do operations on functions, we end up with the <b>restrictions of both</b>.</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/chicken-dish.jpg" alt="chicken dish" height="130" width="172"></p>
<p>It is like cooking for friends:</p>
<ul>
<li>one can't eat peanuts,</li>
<li>the other can't eat dairy food.</li>
</ul>
<p>So what we cook can't have peanuts <b>and also</b> can't have dairy products.</p>
<div class="example">
<h3>Example: f(x)=√x and g(x)=√(3x)</h3>
<p>The domain for <b>f(x)=√x</b> is from 0 onwards:</p>
<p class="center"><img src="images/interval-0-on.svg" alt="zero onwards" height="" width=""></p>
<p>The domain for <b>g(x)=√(3x)</b> is up to and including 3:</p>
<p class="center"><img src="images/interval-to-3.svg" alt="zero onwards" height="" width=""></p>
<p>So the new domain (after adding or whatever) is from 0 to 3:</p>
<p class="center"><img src="images/interval-0-3.svg" alt="zero onwards" height="" width=""></p>
<p>If we choose any other value, then one or the other part of the new function won't work.</p>
</div>
<p>In other words we want to find where the two domains <b>intersect</b>.</p>
<div class="center80">
<p>Note: we can put this whole idea into one line using <a href="set-builder-notation.html">Set Builder Notation</a>:</p>
<p class="center larger">Dom(f+g) = { x<span class="larger"><img src="../images/symbols/member-of.svg" alt="member of" style="vertical-align:middle;" height="" width=""></span><span class="large"><img src="../images/symbols/set-r.svg" alt="Reals" style="vertical-align:middle;" height="23" width="23"></span> | x<span class="larger"><img src="../images/symbols/member-of.svg" alt="member of" style="vertical-align:middle;" height="" width=""></span>Dom(f) and x<span class="larger"><img src="../images/symbols/member-of.svg" alt="member of" style="vertical-align:middle;" height="" width=""></span>Dom(g) }</p>
<p>Which says "the domain of f plus g is the set of all Real Numbers that are in the domain of f AND in the domain of g" (<img src="../images/symbols/member-of.svg" alt="member of" style="vertical-align:middle;" height="" width="">means "member of")</p>
<p>The same rule applies when we add, subtract, multiply or divide, except divide has one extra rule.</p>
</div>
<h2>An Extra Rule for Division</h2>
<p>There is an <b>extra rule</b> for division:</p>
<p class="center"><b>As well as</b> restricting the domain as above, when we <b>divide</b>:</p>
<p class="center"><span class="largest">(f/g)(x) = f(x) / g(x)</span></p>
<p class="center"><b>we must also</b> make sure that g(x) is <b>not equal to zero</b> (so we don't <a href="../numbers/dividing-by-zero.html">divide by zero</a>).</p>
<p>Here is an example:</p>
<div class="example">
<h3>Example: f(x)=√x and g(x)=√(3x)</h3>
<p class="largest" align="center">(f/g)(x) = √x / √(3x)</p>
<p>1. The domain for <b>f(x)=√x</b> is from 0 onwards:</p>
<p class="center"><img src="images/interval-0-on.svg" alt="zero onwards" height="" width=""></p>
<p>2. The domain for <b>g(x)=√(3x)</b> is up to and including 3:</p>
<p class="center"><img src="images/interval-to-3.svg" alt="zero onwards" height="" width=""></p>
<p>3. AND <b>√(3x) cannot be zero</b>, so x cannot be 3:</p>
<p class="center"><img src="images/interval-not-3.svg" alt="zero onwards" height="" width=""><br>
(Notice the <b>open circle</b> at 3, which means <b>not including</b> 3)</p>
<p>So all together we end up with:</p>
<p class="center"><img src="images/interval-0-not3.svg" alt="zero onwards" height="" width=""></p></div>
<p>&nbsp;</p>
<h2>Summary</h2>
<ul>
<div class="bigul">
<li>To add, subtract, multiply or divide functions just do as the operation says.</li>
<li>The domain of the new function will have the restrictions of both functions that made it.</li>
<li>Divide has the extra rule that the function we are dividing by cannot be zero.</li>
</div>
</ul>
<p>&nbsp;</p>
<div class="questions">1193, 1194, 2459, 2460, 8461, 559, 560, 2461, 2462, 8462</div>
<div class="related">
<a href="functions-composition.html">Function Composition</a>
<a href="../algebra/index.html">Algebra Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/sets/functions-operations.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:19 GMT -->
</html>