Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

326 lines
16 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/numbers/e-eulers-number.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:54 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>e - Euler's number</title>
<script language="JavaScript" type="text/javascript">
reSpell = [
["memorize", "memorise"]
];
</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center"><i><b>e</b></i> (Euler's Number)</h1>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/e1.svg" alt="e (eulers number)" height="100" width="100"></p>
<p>The number <i><b>e</b></i> is one of the most important numbers in mathematics.</p>
<p>The first few digits are:</p>
<p class="center"><b>2.7182818284590452353602874713527</b> (and more ...)</p>
<div class="words">
<p><i>It is often called <b>Euler's number</b> after Leonhard Euler (pronounced "Oiler").</i></p>
</div>
<p><b><i>e</i></b> is an <a href="../irrational-numbers.html">irrational number</a> (it cannot be written as a simple fraction).</p>
<p><b><i>e</i></b> is the base of the Natural <a href="../sets/function-logarithmic.html">Logarithms</a> (invented by John Napier).</p>
<p><b><i>e</i></b> is found in many interesting areas, so is worth learning about.</p>
<h2>Calculating</h2>
<p>There are many ways of calculating the value of <b><i>e</i></b>, but none of them ever give a totally exact answer, because <b><i>e</i></b> is <a href="../irrational-numbers.html">irrational</a> and its digits go on forever without repeating.</p>
<p>But it <b>is</b> known to over 1 trillion digits of accuracy!</p>
<p>For example, the value of <span class="large">(1 + 1/n)<sup>n</sup></span> approaches <i><b>e</b></i> as n gets bigger and bigger:</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../calculus/images/graph-1-1-n-n.gif" alt="graph of (1+1/n)^n" height="218" width="357"></p>
<table>
<tbody>
<tr style="text-align:right;">
<td style="width:100px;"><span class="large">n</span></td>
<td style="width:150px;"><span class="large">(1 + 1/n)<sup>n</sup></span></td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">1</td>
<td style="width:150px;">2.00000</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">2</td>
<td style="width:150px;">2.25000</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">5</td>
<td style="width:150px;">2.48832</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">10</td>
<td style="width:150px;">2.59374</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">100</td>
<td style="width:150px;">2.70481</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">1,000</td>
<td style="width:150px;">2.71692</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">10,000</td>
<td style="width:150px;">2.71815</td>
</tr>
<tr style="text-align:right;">
<td style="width:100px;">100,000</td>
<td style="width:150px;">2.71827</td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="fun">
<p><b>Try it!</b> Put "(1 + 1/100000)^100000" into the <a href="calculator.html">calculator</a>:</p>
<p class="center larger">(1 + 1/100000)<sup>100000</sup></p>
<p>What do you get?</p>
<!-- <p>And here is an interesting one:</p>
<p class="center larger">(1 + 9<sup>-4<sup>6&times;7</sup></sup>)<sup>3<sup>2<sup>85</sup></sup></sup></p>
<p>It is very close to <i><b>e</b></i>, uses all the digits 1 to 9, but the values are too big for normal calculators.</p>
<p>But none of these are totally accurate, just approximations.</p>
--> </div>
<!--<div class="fun">
<p><b>Fun Fact</b>: We know that</p>
<p class="center larger"><i>e</i> &asymp; (1 + 1/100,000)<sup>100,000</sup></p>
<p>So we can choose n = 9<sup>4<sup>6&times;7</sup></sup> which is <i>also</i> equal to 3<sup>2<sup>85</sup></sup> and get:</p>
<p class="center larger"><i>e</i> &asymp; (1 + 9<sup>-4<sup>6&times;7</sup></sup>)<sup>3<sup>2<sup>85</sup></sup></sup></p><p>Which is very close to <i><b>e</b></i>, and uses all the digits 1 to 9.</p>
</div>-->
<h2>Another Calculation</h2>
<p>The value of <i><b>e</b></i> is also equal to <span class="intbl"><em>1</em><strong>0!</strong></span> + <span class="intbl"><em>1</em><strong>1!</strong></span> + <span class="intbl"><em>1</em><strong>2!</strong></span> + <span class="intbl"><em>1</em><strong>3!</strong></span> + <span class="intbl"><em>1</em><strong>4!</strong></span> + <span class="intbl"><em>1</em><strong>5!</strong></span> + <span class="intbl"><em>1</em><strong>6!</strong></span> + <span class="intbl"><em>1</em><strong>7!</strong></span> + ... (etc)</p>
<p class="center"><i>(Note: "!" means <a href="factorial.html">factorial</a>)</i></p>
<p>The first few terms add up to: 1 + 1 + <span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>1</em><strong>6</strong></span> + <span class="intbl"><em>1</em><strong>24</strong></span> + <span class="intbl"><em>1</em><strong>120</strong></span> = 2.71666...</p>
<p>In fact Euler himself used this method to calculate <i><b>e</b></i> to 18 decimal places.</p>
<p>You can try it yourself at the <a href="sigma-calculator.html">Sigma Calculator</a>.</p>
<h2>Remembering</h2>
<p>To remember the value of <i><b>e</b></i> (to 10 places) just remember this saying (count the letters!):</p>
<ul>
<li>To</li>
<li>express</li>
<li><b><i>e</i></b></li>
<li>remember</li>
<li>to</li>
<li>memorize</li>
<li>a</li>
<li>sentence</li>
<li>to</li>
<li>memorize</li>
<li>this</li>
</ul>
<p>Or you can remember the curious pattern that after the "2.7" the number "1828" appears TWICE:</p>
<p class="center"><b>2.7 1828 1828</b></p>
<p>And following THAT are the digits of the angles 45°, 90°, 45° in a <a href="../triangle.html">Right-Angled Isosceles Triangle</a> (no real reason, just how it is):</p>
<p class="center"><b>2.7 1828 1828 45 90 45</b></p>
<p><i>(An instant way to seem really smart!)</i></p>
<h2>Growth</h2>
<p><b><i>e</i></b> is used in the <b>"Natural</b>" Exponential Function:</p>
<p class="center"><img src="../sets/images/function-exponential-e.svg" alt="natural exponential function" height="161" width="263"><br>
<span class="larger">Graph of <b>f(x) = e<sup>x</sup></b></span></p>
<p>It has this wonderful property: <span class="larger">"its slope is its value"</span></p>
<div class="def">
<p>At any point the slope of <i><b>e</b></i><sup>x</sup> equals the value of <i><b>e</b></i><sup>x</sup> :</p>
<p class="center"><img src="../sets/images/function-exponential-slopes.svg" alt="natural exponential function" height="161" width="263"><br>
when x=0, the value <i><b>e</b></i><sup>x</sup> = <i><b>1</b></i>, and the slope = <i><b>1</b></i><br>
when x=1, the value <i><b>e</b></i><sup>x</sup> = <i><b>e</b></i>, and the slope = <i><b>e</b></i><br>
etc...</p>
</div>
<p>This is true anywhere for <i><b>e</b></i><sup>x</sup>, and helps us a lot in <a href="../calculus/introduction.html">Calculus</a> when we need to find slopes etc.</p>
<p>So <i><b>e</b></i> is perfect for <b>natural growth</b>, see <a href="../algebra/exponential-growth.html">exponential growth</a> to learn more.</p>
<h2>Area</h2>
<p>The area <b>up to</b> any x-value is also equal to <b><i>e</i></b><sup>x</sup> :</p>
<p class="center"><img src="../sets/images/function-exponential-area.svg" alt="natural exponential function" height="161" width="263"></p>
<h2>An Interesting Property</h2>
<h3>Just for fun, try "Cut Up Then Multiply"</h3>
<p>Let us say that we cut a number into equal parts and then multiply those parts together.</p>
<div class="example">
<h3>Example: Cut 10 into 2 pieces and multiply them:</h3>
<p>Each "piece" is 10/2 = <b>5</b> in size</p>
<p class="center">5×5 = <b>25</b></p>
</div>
<p>Now, ... how could we get the answer to be <b>as big as possible</b>, what size should each piece be?</p>
<p class="center larger">The answer: make the parts as close as possible to "<i><b>e</b></i>" in size.</p>
<div class="example">
<h3>Example: <b>10</b></h3>
<div class="tbl">
<div class="row"><span class="left">10 cut into 2 equal parts is 5:</span><span class="right">5×5 = 5<sup>2</sup> = 25</span></div>
<div class="row"><span class="left">10 cut into 3 equal parts is 3<span class="intbl"><em>1</em><strong>3</strong></span>:</span><span class="right">(3<span class="intbl"><em>1</em><strong>3</strong></span>)×(3<span class="intbl"><em>1</em><strong>3</strong></span>)×(3<span class="intbl"><em>1</em><strong>3</strong></span>) = (3<span class="intbl"><em>1</em><strong>3</strong></span>)<sup>3</sup> = 37.0...</span></div>
<div class="row"><span class="left">10 cut into 4 equal parts is 2.5:</span><span class="right">2.5×2.5×2.5×2.5 = 2.5<sup>4</sup> = <b>39.0625</b></span></div>
<div class="row"><span class="left">10 cut into 5 equal parts is 2:</span><span class="right">2×2×2×2×2 = 2<sup>5</sup> = 32</span></div>
</div>
</div>
<p>The winner is the number closest to "<i><b>e</b></i>", in this case 2.5.</p>
<p>Try it with another number yourself, say 100, ... what do you get?</p>
<h2>100 Decimal Digits</h2>
<p>Here is <i><b>e</b></i> to 100 decimal digits:</p>
<p class="center"><b>2.71828182845904523536028747135266249775724709369995957<br>
49669676277240766303535475945713821785251664274...</b></p>
<h2>Advanced: Use of <i><b>e</b></i> in Compound Interest</h2>
<p>Often the number <i><b>e</b></i> appears in unexpected places. Such as in <b>finance</b>.</p>
<div class="example">
<p>Imagine a wonderful bank that pays 100% interest.</p>
<p class="center">In one year you could turn $1000 into $2000.</p>
<p>Now imagine the bank pays twice a year, that is 50% and 50%</p>
<p class="center">Half-way through the year you have $1500,<br>
you reinvest for the rest of the year and your $1500 grows to $2250</p>
<p>You got <b>more money</b>, because you reinvested half way through.</p>
<p>That is called <a href="../money/compound-interest-periodic.html">compound interest</a>.</p></div>
<p>Could we get even <i>more</i> if we broke the year up into months?</p>
<p>We can use this formula:</p>
<p class="center large">(1+r/n)<sup>n</sup></p>
<p class="center"><b>r</b> = annual interest rate (as a decimal, so <b>1</b> not 100%)<br>
<b>n</b> = number of periods within the year</p>
<p>Our half yearly example is:</p>
<p class="center large">(1+1/2)<sup>2</sup> = 2.25</p>
<p>Let's try it monthly:</p>
<p class="center large">(1+1/12)<sup>12</sup> = 2.613...</p>
<p>Let's try it 10,000 times a year:</p>
<p class="center large">(1+1/10,000)<sup>10,000</sup> = 2.718...</p>
<p><span class="large">Yes, it is heading towards <i><b>e</b></i></span> (and is how Jacob Bernoulli first discovered it).</p>
<p>&nbsp;</p>
<h3>Why does that happen?</h3>
<p>The answer lies in the similarity between:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:center;">
<td style="text-align:right;">Compounding Formula:</td>
<td style="width:20px;">&nbsp;</td>
<td><span class="large">(1 + r/n)<sup>n</sup></span></td>
</tr>
<tr style="text-align:center;">
<td>and </td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr style="text-align:center;">
<td style="text-align:right;"><i><b>e</b></i> (as n approaches infinity):</td>
<td>&nbsp;</td>
<td><span class="large">(1 + 1/n)<sup>n</sup></span></td>
</tr>
</tbody></table>
<p>The Compounding Formula is <b>very like</b> the formula for <i><b>e</b></i><i> (as n approaches infinity)</i>, just with an extra <b>r</b> (the interest rate).</p>
<p>When we chose an interest rate of 100% (= 1 as a decimal), the formulas became the same.</p>
<p>Read <a href="../money/compound-interest-periodic.html">Continuous Compounding</a> for more.</p>
<h2>Euler's Formula for Complex Numbers</h2>
<p><b><i>e</i></b> also appears in this most amazing equation:&nbsp;</p>
<p class="large center"><i>e</i><sup><i><b>i</b></i><span class="times">π</span></sup> + 1 = 0</p>
<p><a href="../algebra/eulers-formula.html">Read more here</a></p>
<h2>Transcendental</h2>
<p><b><i>e</i></b> is also a <a href="transcendental-numbers.html">transcendental</a> number.</p>
<h2>e-Day</h2>
<p style="float:right; margin: 0 0 5px 10px;">
<img src="../images/style/balloons.svg" alt="balloons">
</p>
<p>Celebrate this amazing number on </p>
<ul>
<li>27th January: <b>27/1 at 8:28</b> if you like writing your days first, or</li>
<li>February 7th: <b>2/7 at 18:28</b> if you like writing your months first, or</li>
<li>On both days!</li></ul>
<p><br></p>
<div class="questions">2011, 2012, 2013</div>
<div class="related">
<a href="../algebra/eulers-formula.html">Euler's Formula for Complex Numbers</a>
<a href="../irrational-numbers.html">Irrational Number</a>
<a href="index.html">Numbers Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2022 Rod Pierce</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/numbers/e-eulers-number.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:35:56 GMT -->
</html>