Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

195 lines
12 KiB
HTML

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/geometry/mean-proportional.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:29 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Mean Proportional and the Altitude and Leg Rules</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 class="center">Mean Proportional</h1>
<p class="center"> <i>... and the <b>Altitude</b> and <b>Leg</b> Rules</i></p>
<h2><span class="center">Mean Proportional</span></h2>
<p>The mean proportional of <b>a</b> and <b>b</b> is the value <b>x</b> here:</p><p class="center larger"><span class="intbl"><em><span class="large">a</span></em><strong><span class="large">x</span></strong></span><span class="large">&nbsp; = &nbsp;</span><span class="intbl"><em><span class="large">x</span></em><strong><span class="large">b</span></strong></span></p>
<p class="center">&quot;a is to x, as x is to b&quot;</p>
<p>It looks kind of hard to solve, doesn't it?</p>
<p>But when we <a href="../algebra/cross-multiply.html">cross multiply</a> (multiply both sides by <b>b</b> and also by <b>x</b>) we get:</p>
<table border="0" align="center">
<tr>
<td><p class="center larger"><span class="intbl"><em><span class="large">a</span></em><strong><span class="large">x</span></strong></span><span class="large">&nbsp; = &nbsp;</span><span class="intbl"><em><span class="large">x</span></em><strong><span class="large">b</span></strong></span></p></td>
<td width="90" align="center"><img src="../images/style/right-arrow.gif" width="46" height="46" alt="right arrow" /></td>
<td><p class="center larger"><span class="intbl"><em><span class="large">ab</span></em><strong><span class="large">x</span></strong></span><span class="large">&nbsp; = &nbsp;</span><span class="large">x</span></p></td>
<td width="90" align="center"><img src="../images/style/right-arrow.gif" width="46" height="46" alt="right arrow" /></td>
<td><span class="large">ab&nbsp; = &nbsp;x<sup>2</sup></span></td>
</tr>
</table>
<p>And now we can solve for x:</p>
<p class="center"><span class="large">x&nbsp; = &nbsp;&radic;(ab)</span> </p>
<div class="example">
<h3>Example: What is the mean proportional of 2 and 18?</h3>
<p>We are being asked &quot;What is the value of x here?&quot;</p>
<p class="center larger"><span class="intbl"><em><span class="large">2</span></em><strong><span class="large">x</span></strong></span><span class="large">&nbsp; = &nbsp;</span><span class="intbl"><em><span class="large">x</span></em><strong><span class="large">18</span></strong></span></p>
<p class="center">&quot;2 is to x, as x is to 18&quot;</p>
<p>We know how to solve it:</p>
<p class="center larger">x = &radic;(2&times;18) = &radic;(36) = 6</p>
<p>And this is what we end up with: </p>
<p class="center larger"><span class="intbl"><em><span class="large">2</span></em><strong><span class="large">6</span></strong></span><span class="large">&nbsp; = &nbsp;</span><span class="intbl"><em><span class="large">6</span></em><strong><span class="large">18</span></strong></span></p>
</div>
<p>It basically says that 6 is the <b>&quot;multiplication</b> <b>middle</b>&quot; (<b>2</b> times 3 is <b>6</b>, <b>6</b> times 3 is <b>18</b>)</p>
<p class="center"><img src="images/mean-proportional-1.gif" width="188" height="58" alt="mean proportional 2 x3= 6 x3= 18" /></p>
<p><i>(It is also the <a href="../numbers/geometric-mean.html">geometric mean</a> of the two numbers.) </i></p>
<p>One more example so you get the idea:</p>
<div class="example">
<h3>Example: What is the mean proportional of 5 and 500? </h3>
<p class="center larger">x = &radic;(5&times;500)</p>
<p class="center larger">x = &radic;(2500) = <b>50</b></p>
<p>So it is like this:</p>
<p class="center"><img src="images/mean-proportional-2.gif" width="198" height="53" alt="mean proportional 5 x10= 50 x10= 500" /></p>
</div><p>&nbsp;</p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/mean-proportional-3.svg" alt="mean proportional similar triangles inside" /></p>
<h2>Right Angled Triangles</h2>
<p>We can use the mean proportional with <a href="../right_angle_triangle.html">right angled triangles</a>.</p>
<p>First, an interesting thing:</p>
<ul>
<li>Take a right angled triangle <b>sitting on its hypotenuse</b> (long side)</li>
<li>Put in an altitude line</li>
<li>It divides the triangle into two other triangles, yes?</li>
</ul>
<p>Those two new triangles are <a href="similar.html">similar</a> to each other, and to the original triangle!</p>
<p>This is because they all have the same three angles. </p>
<p>Try it yourself: cut a right angled triangle from a piece of paper, then cut it through the altitude and see if the pieces are really similar.</p>
<p>We can use this knowledge to solve some things.</p>
<p>In fact we get two rules:</p>
<h2>Altitude Rule</h2>
<p>The altitude is the mean proportional between the left and right parts of the hyptonuse, like this:</p>
<p class="center"><img src="images/mean-proportional-4.svg" alt="mean proportional left/altitude = altitude/right" /></p>
<div class="example">
<h3>Example: Find the height <b>h</b> of the altitude (AD)</h3>
<p class="center"><img src="images/mean-proportional-8.gif" width="230" height="124" alt="mean proportional 4.9 h 10" /></p>
<p>Use the Altitude Rule: </p>
<p class="center larger"><span class="intbl"><em>left</em><strong>altitude</strong></span>&nbsp; = &nbsp;<span class="intbl"><em>altitude</em><strong>right</strong></span></p>
<p>Which for us is:</p>
<p class="center larger"><span class="intbl"><em>4.9</em><strong>h</strong></span>&nbsp; = &nbsp;<span class="intbl"><em>h</em><strong>10</strong></span></p>
<p>And solve for h:</p>
<div class="so">h<sup>2</sup> = 4.9 &times; 10 = 49</div>
<div class="so">h = &radic;49 = 7</div>
</div>
<h2>Leg Rule</h2>
<p>Each leg of the triangle is the mean proportional between the <b>hypotenuse</b> and the <b>part of the hypotenuse directly below the leg</b>: </p>
<table border="0" align="center">
<tr>
<td><img src="images/mean-proportional-5.svg" alt="mean proportional hyp/leg = leg/part" /></td>
<td>&nbsp; and &nbsp;</td>
<td><img src="images/mean-proportional-6.svg" alt="mean proportional hyp/leg = leg/part" /></td>
</tr>
</table>
<div class="example">
<h3>Example: What is <b>x</b> (the length of leg AB) ?</h3>
<p class="center"><img src="images/mean-proportional-7.gif" width="249" height="157" alt="mean proportional x 9 7" /></p>
<p>First find the hypotenuse: BC = BD + DC = 9 + 7 = 16</p>
<p>Now use the Leg Rule:</p>
<p class="center larger"><span class="intbl"><em>hypotenuse</em><strong>leg</strong></span>&nbsp; = &nbsp;<span class="intbl"><em>leg</em><strong>part</strong></span></p>
<p>Which for us is:</p>
<p class="center larger"><span class="intbl"><em>16</em><strong>x</strong></span>&nbsp; = &nbsp;<span class="intbl"><em>x</em><strong>9</strong></span></p>
<p>And solve for x:</p>
<div class="so">x<sup>2</sup> = 16 &times; 9 = 144</div>
<div class="so">x = &radic;144 = 12 </div>
</div>
<p>Here is a real world example: </p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/mean-proportional-9.gif" width="216" height="235" alt="mean proportional kite PO is 80, OR is 180" /></p>
<h3>Example: Sam loves kites!</h3>
<p>&nbsp;</p>
<p>Sam wants to make a really big kite:</p>
<ul>
<li>It has two struts PR and QS that intersect at a right angle at O. </li>
<li>PO = 80 cm and OR = 180 cm. </li>
<li>The fabric of the kite has right angles at Q and S.</li>
</ul>
<p>&nbsp;</p>
<p>Sam wants to know the length for the strut QS, and also the lengths of each side.</p>
<p>We only need to look at half the kite to do the calculations. Here is the left half rotated 90&deg;</p>
<p class="center"><img src="images/mean-proportional-10.gif" width="216" height="119" alt="mean proportional triangle p, r, h, 180 and 80" /></p>
<p>Use the altitude rule to find <b>h</b>:</p>
<div class="so">h<sup>2</sup> = 180 &times; 80 = 14400</div>
<div class="so">h = &radic;14400 = 120 cm</div>
<p>So the full length of the strut QS = 2 &times; 120 cm = <b>240 cm </b></p>
<p>&nbsp;</p>
<p>The length RP = RO + OP = 180 cm + 80 cm = <b>260 cm</b> </p>
<p>Now use the Leg Rule to find <b>r</b> (leg QP):</p>
<div class="so">r<sup>2</sup> = 260 &times; 80 = 20800</div>
<div class="so">r = &radic;20800 = <b>144 cm</b> to nearest cm</div>
<p>&nbsp;</p>
<p> Use the Leg Rule again to find <b>p</b> (leg QR):</p>
<div class="so">p<sup>2</sup> = 260 &times; 180 = 46800</div>
<div class="so">p = &radic;46800 = <b>216 cm</b> to nearest cm</div>
<p>&nbsp;</p>
<p>Tell Sam the strut QS will be <b>240 cm</b>, and the sides will be <b>144 cm</b> and <b>216 cm</b>.</p>
<p>Can't wait for a windy day!</p>
</div>
<p>&nbsp;</p>
<div class="questions">
<script type="text/javascript">getQ(7551, 7552, 7553, 7554, 7555, 7556, 7557, 7558, 7559, 7560);</script>&nbsp;
</div>
<div class="related"><a href="../algebra/cross-multiply.html">Cross Multiply</a>
<a href="index.html">Geometry Index</a> <a href="../algebra/trigonometry-index.html">Trigonometry Index</a> </div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/geometry/mean-proportional.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:31 GMT -->
</html>