lkarch.org/tools/mathisfun/www.mathsisfun.com/data/standard-normal-distribution.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

451 lines
19 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/data/standard-normal-distribution.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:42:29 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Normal Distribution</title>
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"],["standardize ","standardise"],["standardized","standardised"]];</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Normal Distribution</h1>
<p>Data can be "distributed" (spread out) in different ways.</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:center;">It can be spread out<br>
more on the left</td>
<td style="width:50px;">&nbsp;</td>
<td style="text-align:center;"><span class="right"><br>
Or more on the right</span></td>
</tr>
<tr>
<td style="text-align:center;"><img src="images/normal-distribution-skew-left.svg" alt="data skewed left" height="177" width="202" ></td>
<td>&nbsp;</td>
<td style="text-align:center;"><img src="images/normal-distribution-skew-right.svg" alt="data skewed right" height="177" width="202" ></td>
</tr>
<tr>
<td style="text-align:center;">&nbsp;</td>
<td>&nbsp;</td>
<td style="text-align:center;">&nbsp;</td>
</tr>
</tbody></table>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td style="text-align:center;">Or it can be all jumbled up</td>
</tr>
<tr>
<td style="text-align:center;"><img src="images/normal-distribution-random.svg" alt="data random" height="177" width="206" ></td>
</tr>
</tbody></table>
<p>But there are many cases where the data tends to be around a central value with no bias left or right, and it gets close to a "Normal Distribution" like this:</p>
<p class="center"><img src="images/normal-distribution-1.svg" alt="bell curve" height="174" width="384" ></p>
<p class="center">The blue curve is a Normal Distribution.<br>
The yellow <a href="histograms.html">histogram</a> shows
some data that<br>
follows it closely,
but not perfectly (which is usual).</p>
<table class="center">
<tbody>
<tr>
<td><img src="images/bell.jpg" alt="bell" height="93" width="100" ></td>
<td>It is often called a "Bell Curve"<br>
because it looks like a bell.</td>
</tr>
</tbody></table>
<p>Many things closely follow a Normal Distribution:</p>
<ul>
<li>heights of people</li>
<li>size of things produced by machines</li>
<li>errors in measurements</li>
<li>blood pressure</li>
<li>marks on a test</li>
</ul>
<p>We say the data is "normally distributed":</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/normal-distribution-2.svg" alt="normal distribution with mean median mode at center" height="162" width="299" ></p>
<p>The&nbsp;<b>Normal&nbsp;Distribution</b>&nbsp;has:</p>
<div class="bigul">
<ul>
<li><a href="../mean.html">mean</a> = <a href="../median.html">median</a> = <a href="../mode.html">mode</a></li>
<li>symmetry about the center</li>
<li>50% of values less than the mean<br>
and 50% greater than the mean</li>
</ul>
</div>
<h2>Quincunx</h2>
<table align="center">
<tbody>
<tr>
<td>
<p>You can see a normal distribution being created by random chance!</p>
<p>It is called the <a href="quincunx.html">Quincunx</a> and it is an amazing machine.</p>
<p>Have a play with it!</p></td>
<td>&nbsp;</td>
<td><a href="quincunx.html"><img src="images/quincunx.jpg" alt="quincunx" height="172" width="129" ></a></td>
</tr>
</tbody></table>
<h2>Standard Deviations</h2>
<p>The <a href="standard-deviation.html">Standard Deviation</a> is a measure of how spread
out numbers are (read that page for details on how to calculate it).</p>
<p>When we <a href="standard-deviation-calculator.html">calculate the standard deviation</a> we find that <b>generally</b>:</p>
<table class="center">
<tbody>
<tr>
<td><img src="images/normal-distrubution-3sds.svg" alt="normal distrubution 68%, 95%, 99.7%" height="480" width="299" ></td>
<td>
<p>&nbsp;</p>
<p><b>68%</b> of values are within<br>
<b>1 standard deviation</b> of the mean</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><b>95%</b> of values are within<br>
<b>2 standard deviations</b> of the mean</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><b>99.7%</b> of values are within <b><br>
3 standard deviations</b> of the mean</p></td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<div class="example">
<h3>Example: 95% of students at school are between <b>1.1m and 1.7m</b> tall.</h3>
<p>Assuming this data is <b>normally distributed</b> can you calculate the mean and standard deviation?</p>
<p>The mean is halfway between 1.1m and 1.7m:</p>
<p class="center larger">Mean = (1.1m + 1.7m) / 2 = <b>1.4m</b></p>
<p>95% is 2 standard deviations either side of the mean (a total of 4 standard deviations) so:</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<td><span class="center larger">1 standard deviation</span></td>
<td><span class="center larger">= (1.7m-1.1m) / 4</span></td>
</tr>
<tr>
<td>&nbsp;</td>
<td><span class="center larger">= 0.6m / 4</span></td>
</tr>
<tr>
<td>&nbsp;</td>
<td><span class="center larger">= <b>0.15m</b></span></td>
</tr>
</tbody></table>
<p class="center"><span class="right">And this is the result:</span><br>
<img src="images/normal-distribution-exb1.svg" alt="normal distribution 95%" height="142" width="260" ></p>
</div>
<p>It is good to know the standard deviation, because we can say that any value is:</p>
<ul>
<li><b>likely</b> to be within 1 standard deviation (68 out of 100 should be)</li>
<li><b>very likely</b> to be within 2 standard deviations (95 out of 100 should be)</li>
<li><b>almost certainly</b> within 3 standard deviations (997 out of 1000 should be)</li>
</ul>
<h2>Standard Scores</h2>
<div class="words">
<p>The number of <b>standard deviations from the mean</b> is also called the "Standard Score", "sigma" or "z-score". Get used to those words!</p>
</div>
<div class="example">
<h3>Example: In that same school one of your friends is 1.85m tall</h3>
<p style="float:right; margin: 0 0 5px 10px;">&nbsp;</p>
<span style="float:right; margin: 0 0 5px 10px;"><img src="images/normal-distribution-exb1.svg" alt="normal distribution 95%" height="142" width="260" ></span>
<p>You can see on the bell curve that 1.85m is <b>3 standard deviations</b> from the mean of 1.4, so:</p>
<p class="larger">Your friend's height has a "z-score" of 3.0</p>
<div style="clear:both"></div>
<p>It is also possible to <b>calculate</b> how many standard deviations 1.85 is from the mean</p>
<p><i>How far is 1.85 from the mean?</i></p>
<p class="center">It is 1.85 - 1.4 =<b> 0.45m from the mean</b></p>
<p><i>How many standard deviations is that?</i> The standard deviation is 0.15m, so:</p>
<p class="center">0.45m / 0.15m = <b>3 standard deviations</b></p>
</div>
<p>So to convert a value to a Standard Score ("z-score"):</p>
<ul>
<li>first subtract the mean,</li>
<li>then divide by the Standard Deviation</li>
</ul>
<p>And doing that is called "Standardizing":</p>
<p class="center"><img src="images/standardizing.svg" alt="standardizing" style="max-width:100%" height="169" width="609" ></p>
<p>We can take any Normal Distribution and convert it to The Standard Normal Distribution.</p>
<div class="example">
<h3>Example: Travel Time</h3>
<p>A survey of daily travel time had these results (in minutes):</p>
<p class="center">26, 33, 65, 28, 34, 55, 25, 44, 50, 36, 26, 37, 43, 62, 35, 38, 45, 32, 28, 34</p>
<p>The <b>Mean is 38.8 minutes</b>, and the <b>Standard Deviation is 11.4 minutes</b> (you can copy and paste the values into the <a href="standard-deviation-calculator.html">Standard Deviation Calculator</a> if you want).</p>
<p>Convert the values to z-scores ("standard scores").</p>
<p>&nbsp;</p>
<p>To convert <b>26</b>:</p>
<div class="so"> first subtract the mean: 26 38.8 = 12.8, </div>
<div class="so">then divide by the Standard Deviation: 12.8/11.4 = <span class="hilite">1.12</span></div>
<p>So <b>26</b> is <b>1.12 Standard Deviations</b> from the Mean</p>
<p>&nbsp;</p>
<p>Here are the first three conversions</p>
<table style="border: 0; margin:auto;">
<tbody>
<tr style="text-align:right;">
<td style="text-align:center;">Original Value</td>
<td style="text-align:center;">Calculation</td>
<td style="text-align:center;">Standard Score<br>
(z-score)</td>
</tr>
<tr style="text-align:right;">
<td style="text-align:center;"><b>26</b></td>
<td style="text-align:center;">(26-38.8) / 11.4 =</td>
<td style="text-align:center;"><b>1.12</b></td>
</tr>
<tr style="text-align:right;">
<td style="text-align:center;"><b>33</b></td>
<td style="text-align:center;">(33-38.8) / 11.4 =</td>
<td style="text-align:center;"><b>0.51</b></td>
</tr>
<tr style="text-align:right;">
<td style="text-align:center;"><b>65</b></td>
<td style="text-align:center;">(65-38.8) / 11.4 =</td>
<td style="text-align:center;"><b>+2.30</b></td>
</tr>
<tr style="text-align:right;">
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
</tr>
</tbody></table>
<p>&nbsp;</p>
<p>And here they are graphically:</p>
<p class="center"><img src="images/standard-normal-distribution-scores.gif" alt="standard normal distribution scores" height="163" width="263" ></p>
<p>You can calculate the rest of the z-scores yourself!</p>
</div>
<p>&nbsp;</p>
<p>The <b>z-score formula</b> that we have been using is:</p>
<div class="def">
<p class="center large">z = <span class="intbl"><em>x μ</em><strong>σ</strong></span></p>
</div>
<ul>
<li><b>z</b> is the "z-score" (Standard Score)</li>
<li><b>x</b> is the value to be standardized</li>
<li><b>μ</b> ('mu") is the mean</li>
<li><b>σ</b> ("sigma") is the standard deviation</li>
</ul>
<p>And this is how to use it:</p>
<div class="example">
<h3>Example: Travel Time (continued)</h3>
<p>Here are the first three conversions using the "z-score formula":</p>
<p class="center large">z = <span class="intbl"><em>x μ</em><strong>σ</strong></span></p>
<ul>
<li>μ = 38.8</li>
<li>σ = 11.4</li>
</ul>
<table align="center" border="1">
<tbody>
<tr style="text-align:right;">
<th align="center" width="50">x</th>
<th align="center" width="110"><span class="intbl"><em>x μ</em><strong>σ</strong></span></th>
<th align="center" width="80">z<br>
(z-score)</th>
</tr>
<tr style="text-align:right;">
<td style="text-align:center;">26</td>
<td style="text-align:center;"><span class="intbl"><em>26 38.8</em><strong>11.4</strong></span></td>
<td style="text-align:center;">= 1.12</td>
</tr>
<tr style="text-align:right;">
<td style="text-align:center;">33</td>
<td style="text-align:center;"><span class="intbl"><em>33 38.8</em><strong>11.4</strong></span></td>
<td style="text-align:center;">= 0.51</td>
</tr>
<tr style="text-align:right;">
<td style="text-align:center;">65</td>
<td style="text-align:center;"><span class="intbl"><em>65 38.8</em><strong>11.4</strong></span></td>
<td style="text-align:center;">= +2.30</td>
</tr>
<tr style="text-align:right;">
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
<td style="text-align:center;">...</td>
</tr>
</tbody></table>
<p>The exact calculations we did before, just following the formula.</p>
</div>
<h2>Why Standardize ... ?</h2>
<p>It can help us make decisions about our data.</p>
<div class="example">
<h3>Example: Professor Willoughby is marking a test.</h3>
<p>Here are the students' results (out of 60 points):</p>
<p class="center">20, 15, 26, 32, 18, 28, 35, 14, 26, 22, 17</p>
<p>Most students didn't even get 30 out of 60, and<b> most will fail</b>.</p>
<p>The test must have been really hard, so the Prof decides to Standardize all the scores and only fail people more than 1 standard deviation below the mean.</p>
<p>The <b>Mean is 23</b>, and the <b>Standard Deviation is 6.6</b>, and these are the Standard Scores:</p>
<p class="center">-0.45, <span class="hilite">-1.21</span>, 0.45, 1.36, -0.76, 0.76, 1.82, <span class="hilite">-1.36</span>, 0.45, -0.15, -0.91</p>
<p>Now only 2 students will <span class="hilite">fail</span> (the ones lower than 1 standard deviation)</p>
<p>Much fairer!</p>
</div>
<p>It also makes life easier because we only need one table (the <a href="standard-normal-distribution-table.html">Standard Normal Distribution Table</a>), rather than doing calculations individually for each value of mean and standard deviation.</p>
<h2>In More Detail</h2>
<p>Here is the Standard Normal Distribution with percentages for every <b>half of a standard deviation</b>, and cumulative percentages:</p>
<p class="center"><img src="images/normal-distrubution-large.svg" alt="normal distrubution large bell curve" style="max-width:100%" height="329" width="650" ></p>
<div class="example">
<p>Example: Your score in a recent test was <b>0.5 standard deviations</b> above the average, how many people scored<b> lower</b> than you did?</p>
<ul>
<li>Between 0 and 0.5 is <b>19.1%</b></li>
<li>Less than 0 is <b>50%</b> (left half of the curve)</li>
</ul>
<p>So the total less than you is:</p>
<p class="center larger">50% + 19.1% = 69.1%</p>
<p>In theory <b>69.1% scored less</b> than you did (but with real data the percentage may be different)</p>
</div>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../measure/images/measuring-1kg-2.jpg" alt="measuring 1kg " height="240" width="200" ></p>
<h2>A Practical Example: Your company packages sugar in 1 kg bags.</h2>
<p>When you weigh a sample of bags you get these results:</p>
<ul>
<li>1007g, 1032g, 1002g, 983g, 1004g, ... (a hundred measurements)</li>
<li>Mean = 1010g</li>
<li>Standard Deviation = 20g</li>
</ul>
<p><b>Some values are less than 1000g ... can you fix that?</b></p>
<p>The normal distribution of your measurements looks like this:</p>
<p class="center"><img src="images/normal-distribution-ex1.gif" alt="normal distribution ex1" height="150" width="258" ></p>
<p class="center larger">31% of the bags are less than 1000g,<br>
which is cheating the customer!</p>
<p>It is a random thing, so we can't <b>stop</b> bags having less than 1000g, but we can try to <b>reduce it</b> a lot.</p>
<p>Let's adjust the machine so that 1000g is:</p>
<ul>
<div class="bigul">
<li>at 3 standard deviations:</li>
<div class="center80">From the big bell curve above we see that <b>0.1%</b> are less. But maybe that is too small.</div>
<li>at 2.5 standard deviations:</li>
<div class="center80">Below 3 is 0.1% and between 3 and 2.5 standard deviations is 0.5%, together that is 0.1% + 0.5% = <b>0.6%</b> (a good choice I think)</div>
</div>
</ul>
<p>So let us adjust the machine to have <b>1000g at 2.5 standard deviations</b> from the mean.</p>
<p>Now, we can adjust it to:</p>
<ul>
<li>increase the amount of sugar in each bag (which changes the mean), or</li>
<li>make it more accurate (which reduces the standard deviation)</li>
</ul>
<p>Let us try both.</p>
<h4>Adjust the mean amount in each bag</h4>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/normal-distribution-ex2.gif" alt="normal distribution ex2" height="145" width="330" ></p>
<p>The standard deviation is 20g, and we need 2.5 of them:</p>
<p class="center larger">2.5 × 20g = 50g</p>
<p>So the machine should average <b>1050g</b>, like this:</p>
<p>&nbsp;</p>
<h4>Adjust the accuracy of the machine</h4>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/normal-distribution-ex3.gif" alt="normal distribution ex3" height="150" width="258" ></p>
<p>Or we can keep the same mean (of 1010g), but then we need 2.5 standard
deviations to be equal to 10g:</p>
<p class="center larger">10g / 2.5 = 4g</p>
<p>So the standard deviation should be <b>4g</b>, like this:</p>
<p>(We hope the machine is that accurate!)</p>
<p>Or perhaps we could have some combination of better accuracy and slightly larger average size, I will leave that up to you!</p>
<h2>More Accurate Values ...</h2>
<p>Use the <a href="standard-normal-distribution-table.html">Standard Normal Distribution Table</a> when you want more accurate values.</p>
<p>&nbsp;</p>
<div class="questions">2619, 2620, 2621, 2622, 2623, 2624, 2625, 2626, 3844, 3845</div>
<div class="related">
<a href="standard-deviation.html">Standard Deviation</a>
<a href="standard-deviation-calculator.html">Standard Deviation Calculator</a>
<a href="standard-normal-distribution-table.html">Standard Normal Distribution Table</a>
<a href="quincunx.html">Quincunx</a>
<a href="index.html">Probability and Statistics Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2022 Rod Pierce</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/data/standard-normal-distribution.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:42:32 GMT -->
</html>