lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/implicit-differentiation.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

335 lines
20 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/implicit-differentiation.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:07 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Implicit Differentiation</title>
<script language="JavaScript" type="text/javascript">Author='Sayid, Khalil and Pierce, Rod';</script>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin="">
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer="defer"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async="" src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Implicit Differentiation</h1>
<p class="center"><i>Finding the derivative when you cant solve for y<br>
</i></p>
<p class="center"><img src="images/imply.jpg" alt="What are you trying to imply?" height="266" width="509"></p>
<p>You may like to read <a href="derivatives-introduction.html">Introduction to Derivatives</a> and <a href="derivatives-rules.html">Derivative Rules</a> first.</p>
<h2>Implicit vs Explicit</h2>
<p>A function can be explicit or implicit:</p>
<p><b>Explicit</b>: "y = some function of x". <i>When we know x we can calculate y&nbsp;directly.</i></p>
<p><b>Implicit</b>: "some function of y and x equals something else". <i>Knowing x does not lead directly to y.</i></p>
<div class="example">
<h3>Example: A Circle</h3>
<table align="center" cellpadding="5">
<tbody>
<tr style="text-align:center;">
<td><b>Explicit Form</b></td>
<td style="width:20px;">&nbsp;</td>
<td><b>Implicit Form</b></td>
</tr>
<tr style="text-align:center;">
<td class="large" style="white-space:nowrap">y = ± √ (r<sup>2</sup> x<sup>2</sup>)</td>
<td>&nbsp;</td>
<td class="large" style="white-space:nowrap">x<sup>2</sup> + y<sup>2</sup> = r<sup>2</sup></td>
</tr>
<tr style="text-align:center;">
<td>In this form, y is expressed<br>
as a function of x.</td>
<td>&nbsp;</td>
<td>In this form, the function is<br>
expressed in terms of both y and x.</td>
</tr>
</tbody></table>
<p class="center"><img src="images/graph-x2-y2-9.gif" alt="graph x^2 + y^2 = 9, a circle" height="194" width="223"><br>
The <a href="../data/grapher-equation1bdb.html?func1=x%5E2+y%5E2=9&amp;xmin=-5.000&amp;xmax=5.000&amp;ymin=-3.750&amp;ymax=3.750">graph</a> of x<sup>2</sup> + y<sup>2</sup> = 3<sup>2</sup></p>
</div>
<h2>How to do Implicit Differentiation</h2>
<ul>
<li>Differentiate with respect to x</li>
<li>Collect all the <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> on one side</li>
<li>Solve for <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></li>
</ul>
<div class="example">
<h3>Example: x<sup>2</sup> + y<sup>2</sup> = r<sup>2</sup></h3>
<p>Differentiate with respect to x:</p>
<p class="center large"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(x<sup>2</sup>) + <span class="intbl"> <em>d</em> <strong>dx</strong> </span>(y<sup>2</sup>) = <span class="intbl"> <em>d</em> <strong>dx</strong> </span>(r<sup>2</sup>)</p>
<p>Let's solve each term:</p>
<div class="tbl">
<div class="row"><span class="left">Use the <a href="derivatives-rules.html">Power Rule</a>:</span><span class="right"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(x<sup>2</sup>) = 2x</span></div>
<div class="row"><span class="left">Use the Chain Rule (explained below):</span><span class="right"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(y<sup>2</sup>) = 2y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span></span></div>
<div class="row"><span class="left">r<sup>2</sup> is a constant, so its derivative is 0:</span><span class="right"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(r<sup>2</sup>) = 0</span></div>
</div>
<p>Which gives us:</p>
<p class="center large">2x + 2y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = 0</p>
<p>Collect all the <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> on one side</p>
<p class="center large">y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = x</p>
<p>Solve for <span class="intbl"> <em>dy</em> <strong>dx</strong> </span>:</p>
<p class="center larger"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>x</em> <strong>y</strong> </span></p>
</div>
<div class="def">
<h3>The Chain Rule Using <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></h3>
<p>Let's look more closely at how <span class="large"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(y<sup>2</sup>)</span> becomes <span class="large">2y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span></span></p>
<p>The Chain Rule says:</p>
<p class="center large"><span class="intbl"> <em>du</em> <strong>dx</strong> </span> = <span class="intbl"> <em>du</em> <strong>dy</strong> </span><span class="intbl"> <em>dy</em> <strong>dx</strong> </span></p>
<p>Substitute in <span class="large">u = y<sup>2</sup></span>:</p>
<p class="center large"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(y<sup>2</sup>) = <span class="intbl"> <em>d</em> <strong>dy</strong> </span>(y<sup>2</sup>)<span class="intbl"> <em>dy</em> <strong>dx</strong> </span></p>
<p>And then:</p>
<p class="center large"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(y<sup>2</sup>) = 2y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span></p>
<h3>Basically, all we did was differentiate with respect to y and multiply by <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></h3>
</div>
<p>Another common notation is to use <span class="hilite"></span> to mean <span class="intbl"> <em>d</em> <strong>dx</strong> </span></p>
<div class="def">
<h3>The Chain Rule Using&nbsp;<span class="center large"></span></h3>
<p>The Chain Rule can also be written using <span class="center large"></span> notation:</p>
<p class="center large">f(g(x)) = f(g(x))g(x)</p>
<p>g(x) is our function "y", so:</p>
<p class="center large">f(y) = f(y)y</p>
<p>f(y) = <span class="large"> y<sup>2</sup></span>, so f<span class="center large"></span>(y) = 2y:</p>
<p class="center large">f(y) = 2yy</p>
<p class="center large">or alternatively: f(y) = 2y <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></p>
<h3>Again, all we did was differentiate with respect to y and multiply by <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></h3>
</div>
<h2>Explicit</h2>
<p>Let's also find the derivative using the <b>explicit</b> form of the equation.</p>
<ul>
<li>To solve this explicitly, we can solve the equation for y</li>
<li>Then differentiate</li>
<li>Then substitute the equation for y again</li>
</ul>
<div class="example">
<h3>Example: x<sup>2</sup> + y<sup>2</sup> = r<sup>2</sup></h3>
<div class="tbl">
<div class="row"><span class="left">Subtract x<sup>2</sup> from both sides:</span><span class="right">y<sup>2</sup> = r<sup>2</sup> x<sup>2</sup></span></div>
<div class="row"><span class="left">Square root:</span><span class="right">y = ±√(r<sup>2</sup> x<sup>2</sup>)&nbsp;</span></div>
<div class="row"><span class="left">Let's do <b>just the positive</b>: </span><span class="right">y = √(r<sup>2</sup> x<sup>2</sup>)&nbsp;</span></div>
<div class="row"><span class="left">As a power: </span><span class="right">y = (r<sup>2</sup> x<sup>2</sup>)<sup>½</sup></span></div>
<div class="row"><span class="left"><b>Derivative (Chain Rule)</b>:</span><span class="right">y<span class="center large"></span> =½(r<sup>2</sup> x<sup>2</sup>)<sup>−½</sup>(<span class="center large"></span>2x)</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right">y<span class="center large"></span> = x(r<sup>2</sup> x<sup>2</sup>)<sup>−½</sup></span></div>
<div class="row"><span class="left">Simplify more:</span><span class="right">y<span class="center large"></span> = <span class="center large"><span class="intbl"> <em>x</em> <strong>(r<sup>2</sup> x<sup>2</sup>)<sup>½</sup></strong> </span></span></span></div>
<div class="row"><span class="left">Now, because <b>y = (r<sup>2</sup> x<sup>2</sup>)<sup>½</sup></b>:&nbsp;</span><span class="right">y<span class="center large"></span> = x/y</span></div>
</div>
<p>We get the same result this way!</p>
<p>You can try taking the derivative of the negative&nbsp;term yourself.</p>
</div>
<div class="def">
<h3>Chain Rule Again!</h3>
<p>Yes, we used the Chain Rule again. Like this (note different letters, but same rule):</p>
<p class="center large"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>dy</em> <strong>df</strong> </span><span class="intbl"> <em>df</em> <strong>dx</strong> </span></p>
<p>Substitute in <span class="large">f = (r<sup>2</sup> x<sup>2</sup>)</span>:</p>
<p class="center large"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(f<sup>½</sup>) = <span class="intbl"> <em>d</em> <strong>df</strong> </span>(f<sup>½</sup>)<span class="intbl"> <em>d</em> <strong>dx</strong> </span><span class="intbl"> </span><span class="large">(r<sup>2</sup> x<sup>2</sup>)</span></p>
<p>Derivatives:</p>
<p class="center large"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(f<sup>½</sup>) = ½(f<sup>−½</sup>) <span class="large">(2x)</span></p>
<p>And substitute back <span class="large">f = (r<sup>2</sup> x<sup>2</sup>)</span>:</p>
<p class="center large"><span class="intbl"> <em>d</em> <strong>dx</strong> </span><span class="large">(r<sup>2</sup> x<sup>2</sup>)</span><sup>½</sup> = ½(<span class="large">(r<sup>2</sup> x<sup>2</sup>)</span><sup>−½</sup>) (2<span class="large">x)</span></p>
<p>And we simplified from there.</p>
</div>
<h2>Using The Derivative</h2>
<p>OK, so why find the derivative <span class="large">y = x/y </span>?</p>
<p>Well, for example, we can find the slope of a tangent line.</p>
<div class="example">
<h3>Example: what is the slope of a circle centered at the origin with a radius of 5 at the point (3, 4)?</h3>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-x2-y2-25.gif" alt="graph x^2 + y^2 = 25 with tangent line" height="319" width="261"></p>
<p>No problem, just substitute it into our equation:</p>
<p class="center"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = x/y</p>
<p class="center"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = 3/4</p>
<p>And for bonus, the equation for the tangent line is:</p>
<p class="center">y = 3/4 x + 25/4</p>
</div>
<h2>Another Example</h2>
<p>Sometimes the <b>implicit</b> way works where the explicit way is hard or impossible.</p>
<div class="example">
<h3>Example: 10x<sup>4</sup> 18xy<sup>2</sup> + 10y<sup>3</sup> = 48</h3>
<p>How do we solve for y?&nbsp;We don't have to!</p>
<ul>
<li>First, differentiate with respect to x (use the Product Rule for the xy<sup>2</sup> term).</li>
<li>Then move all dy/dx terms to the left side.</li>
<li>Solve for dy/dx</li>
</ul>
<p>Like this:</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">10x<sup>4</sup> 18xy<sup>2</sup> + 10y<sup>3</sup> = 48</span></div>
<div class="row"><span class="left"><b>Derivative</b>:</span><span class="right">10 (4x<sup>3</sup>) 18(x(2y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span>) + y<sup>2</sup>) + 10(3y<sup>2</sup><span class="intbl"> <em>dy</em> <strong>dx</strong> </span>) = 0</span></div>
<div class="row"><span class="left"></span><span class="right">
<p>(the middle term is explained<br>
in "Product Rule" below)</p></span></div>
<div class="row"><span class="left">Simplify:</span><span class="right">40x<sup>3</sup> 36xy<span class="intbl"> <em>dy</em> <strong>dx</strong> </span> 18y<sup>2</sup> + 30y<sup>2</sup><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = 0</span></div>
<div class="row"><span class="left"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> on left:</span><span class="right">36xy<span class="intbl"> <em>dy</em> <strong>dx</strong></span> + 30y<sup>2</sup><span class="intbl"><em>dy</em> <strong>dx</strong> </span> = 40x<sup>3</sup> + 18y<sup>2</sup></span></div>
<div class="row"><span class="left">Simplify :</span><span class="right">(30y<sup>2</sup>36xy)<span class="intbl"> <em>dy</em> <strong>dx</strong> </span>= 18y<sup>2</sup> 40x<sup>3</sup></span></div>
<div class="row"><span class="left">Simplify :</span><span class="right">3(5y<sup>2</sup>6xy)<span class="intbl"> <em>dy</em> <strong>dx</strong> </span>= 9y<sup>2</sup> 20x<sup>3</sup></span></div>
</div>
<p>And we get:</p>
<div class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> = <span class="intbl"><em>9y<sup>2</sup> 20x<sup>3</sup></em><strong>3(5y<sup>2</sup> 6xy)</strong></span></div>
<!-- dy/dx = 9y^2~-20x^3/3(5y^2~-6xy) -->
<p>&nbsp;</p>
<h3>Product Rule</h3>
<p>For the middle term we used the Product Rule: (fg) = f g + f g</p>
<div class="tbl">
<div class="row"><span class="left">(xy<sup>2</sup>)&nbsp;</span><span class="right">= x(y<sup>2</sup>) + (x)y<sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= x(2y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span>) + y<sup>2</sup></span></div>
</div>
<p>Because (y<sup>2</sup>)&nbsp; = 2y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span>(we worked that out in a previous example)</p>
<p>Oh, and <span class="intbl"><em>dx</em><strong>dx</strong></span> = 1, in other words x = 1</p>
</div>
<h2>Inverse Functions</h2>
<p>Implicit differentiation can help us solve inverse functions.</p>
<p>The general pattern is:</p>
<ul>
<li>Start with the inverse equation in explicit form. Example: y = sin<sup>1</sup>(x)</li>
<li>Rewrite it in non-inverse mode: Example: x = sin(y)</li>
<li>Differentiate this function with respect to x on both sides.</li>
<li>Solve for dy/dx</li>
</ul>
<p>As a final step we can try to simplify more by substituting the original equation.</p>
<p>An example will help:</p>
<div class="example">
<h3>Example: the inverse sine function y = sin<sup>1</sup>(x)</h3>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">y = sin<sup>1</sup>(x)</span></div>
<div class="row"><span class="left">In noninverse mode:</span><span class="right">x = sin(y)</span></div>
<div class="row"><span class="left"><b>Derivative</b>:</span><span class="right"><span class="intbl"> <em>d</em> <strong>dx</strong> </span>(x) = <span class="intbl"> <em>d</em> <strong>dx</strong> </span>sin(y)</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">1 = cos(y) <span class="intbl"> <em>dy</em> <strong>dx</strong> </span></span></div>
<div class="row"><span class="left">Put <span class="intbl"> <em>dy</em> <strong>dx</strong> </span> on left:</span><span class="right"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span>= <span class="intbl"> <em>1</em> <strong>cos(y)</strong> </span></span></div>
</div>
<p>We can also go one step further using the Pythagorean identity:</p>
<p class="center">sin<sup>2</sup> y + cos<sup>2</sup> y = 1</p>
<p class="center">cos y = √(1 sin<sup>2</sup> y )</p>
<p>And, because sin(y) = x (from above!), we get:</p>
<p class="center">cos y = √(1 x<sup>2</sup>)</p>
<p>Which leads to:</p>
<p class="center larger"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span>= <span class="intbl"> <em>1</em> <strong>√(1 x<sup>2</sup>)</strong> </span></p>
</div>
<div class="example">
<h3>Example: the derivative of square root √x</h3>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">y = √x</span></div>
<div class="row"><span class="left">So:</span><span class="right">y<sup>2</sup> = x</span></div>
<div class="row"><span class="left"><b>Derivative</b>:</span><span class="right">2y<span class="intbl"> <em>dy</em> <strong>dx</strong> </span>= 1</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>1</em> <strong>2y</strong> </span></span></div>
<div class="row"><span class="left">Because y = √x:</span><span class="right"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>1</em> <strong>2√x</strong> </span></span></div>
</div>
<p>Note: this is the same answer we get using the Power Rule:</p>
<div class="tbl">
<div class="row"><span class="left">Start with:</span><span class="right">y = √x</span></div>
<div class="row"><span class="left">As a power:</span><span class="right">y = x<sup>½</sup></span></div>
<div class="row"><span class="left">Power Rule <span class="intbl"> <em>d</em> <strong>dx</strong> </span>x<sup>n</sup> = nx<sup>n1</sup>:</span><span class="right"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = (½)x<sup>−½</sup></span></div>
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="intbl"> <em>dy</em> <strong>dx</strong> </span> = <span class="intbl"> <em>1</em> <strong>2√x</strong> </span></span></div>
</div>
</div>
<h2>Summary</h2>
<ul class="bigul">
<li>To Implicitly derive a function (useful when a function can't easily be solved for y)
<ul>
<li>Differentiate with respect to x</li>
<li>Collect all the dy/dx on one side</li>
<li>Solve for dy/dx</li>
</ul></li>
<li>To derive an inverse function, restate it without the inverse then use Implicit differentiation</li>
</ul>
<p>&nbsp;</p>
<div class="questions">11312, 11313, 11314, 11315, 11316, 11317, 11318, 11319, 11320, 11321</div>
<div class="related">
<a href="derivatives-introduction.html">Introduction to Derivatives</a>
<a href="derivatives-rules.html">Derivative Rules</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/implicit-differentiation.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:08 GMT -->
</html>