new file: Files/flashplayer_32_sa.exe new file: favicon.ico new file: globe.gif new file: imgs/download.png new file: imgs/zuck.jpg new file: index.html new file: other.ico new file: script.js new file: site.webmanifest new file: sitemap.html new file: styles/backround.css new file: styles/border.css new file: styles/fonts/Titillium_Web/OFL.txt new file: styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf new file: styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf new file: styles/fonts/webfontkit-20221027-163353/generator_config.txt new file: styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/stylesheet.css new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff new file: styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2 new file: styles/fonts/webfontkit-20221027-165950/generator_config.txt new file: styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css new file: styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/stylesheet.css new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff new file: styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2 new file: styles/style.css new file: tools/2048/.gitignore new file: tools/2048/.jshintrc new file: tools/2048/CONTRIBUTING.md new file: tools/2048/LICENSE.txt new file: tools/2048/README.md new file: tools/2048/Rakefile new file: tools/2048/favicon.ico new file: tools/2048/index.html new file: tools/2048/js/animframe_polyfill.js new file: tools/2048/js/application.js new file: tools/2048/js/bind_polyfill.js new file: tools/2048/js/classlist_polyfill.js new file: tools/2048/js/game_manager.js new file: tools/2048/js/grid.js new file: tools/2048/js/html_actuator.js new file: tools/2048/js/keyboard_input_manager.js new file: tools/2048/js/local_storage_manager.js new file: tools/2048/js/tile.js new file: tools/2048/meta/apple-touch-icon.png new file: tools/webretro/cores/neocd_libretro.js new file: tools/webretro/cores/neocd_libretro.wasm new file: tools/webretro/cores/nestopia_libretro.js new file: tools/webretro/cores/nestopia_libretro.wasm new file: tools/webretro/cores/o2em_libretro.js new file: tools/webretro/cores/o2em_libretro.wasm new file: tools/webretro/cores/opera_libretro.js new file: tools/webretro/cores/opera_libretro.wasm
257 lines
10 KiB
HTML
257 lines
10 KiB
HTML
<!doctype html>
|
||
<html lang="en">
|
||
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/differentiable.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:04 GMT -->
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<!-- #BeginEditable "doctitle" -->
|
||
<title>Differentiable</title>
|
||
<meta name="description" content=" Differentiable means that the derivative exists ...">
|
||
<style>
|
||
.lim {
|
||
font-weight: bold;
|
||
font-style: italic;
|
||
font-size: 120%;
|
||
vertical-align:sub;
|
||
}
|
||
</style>
|
||
<!-- #EndEditable -->
|
||
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
|
||
<meta name="HandheldFriendly" content="true">
|
||
<meta name="referrer" content="always">
|
||
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
|
||
<link rel="preload" href="../style4.css" as="style">
|
||
<link rel="preload" href="../main4.js" as="script">
|
||
<link rel="stylesheet" href="../style4.css">
|
||
<script src="../main4.js" defer></script>
|
||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
|
||
<script>
|
||
window.dataLayer = window.dataLayer || [];
|
||
function gtag(){dataLayer.push(arguments);}
|
||
gtag('js', new Date());
|
||
gtag('config', 'UA-29771508-1');
|
||
</script>
|
||
</head>
|
||
|
||
<body id="bodybg" class="adv">
|
||
|
||
<div id="stt"></div>
|
||
<div id="adTop"></div>
|
||
<header>
|
||
<div id="hdr"></div>
|
||
<div id="tran"></div>
|
||
<div id="adHide"></div>
|
||
<div id="cookOK"></div>
|
||
</header>
|
||
|
||
<div class="mid">
|
||
|
||
<nav>
|
||
<div id="menuWide" class="menu"></div>
|
||
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
|
||
|
||
<div id="search" role="search"></div>
|
||
<div id="linkto"></div>
|
||
|
||
<div id="menuSlim" class="menu"></div>
|
||
<div id="menuTiny" class="menu"></div>
|
||
</nav>
|
||
|
||
<div id="extra"></div>
|
||
|
||
<article id="content" role="main">
|
||
|
||
<!-- #BeginEditable "Body" -->
|
||
|
||
<h1 class="center">Differentiable</h1>
|
||
|
||
<p>Differentiable means that the <a href="derivatives-introduction.html">derivative</a> <b>exists</b> ...</p>
|
||
<div class="example">
|
||
<h3>Example: is x<sup>2</sup> + 6x differentiable?</h3>
|
||
<p><a href="derivatives-rules.html">Derivative rules</a> tell us the derivative of x<sup>2</sup> is 2x and the derivative of x is 1, so:</p>
|
||
<p>Its derivative is <b>2x + 6</b></p>
|
||
<p>So yes! x<sup>2</sup> + 6x is differentiable.</p>
|
||
</div>
|
||
<p><b>... and</b> it must exist for <b>every</b> value in the function's <a href="../sets/domain-range-codomain.html">domain</a>.</p>
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<h3>Domain</h3>
|
||
<p>In its simplest form the domain is<br>
|
||
all the values that go into a function</p></td>
|
||
<td><img src="../sets/images/range-domain-graph.svg" alt="domain and range" width="298" height="167" ></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<div class="example">
|
||
<h3>Example (continued)</h3>
|
||
<p>When not stated we assume that the domain is the <a href="../numbers/real-numbers.html">Real Numbers</a>.</p>
|
||
<p>For <b>x<sup>2</sup> + 6x</b>, its derivative of <b>2x + 6</b> exists for all Real Numbers.</p>
|
||
<p>So we are still safe: x<sup>2</sup> + 6x is differentiable.</p>
|
||
</div>
|
||
<p>But what about this:</p>
|
||
<div class="example">
|
||
<h3>Example: The function f(x) = |x| (<a href="../sets/function-absolute-value.html">absolute value</a>):</h3>
|
||
<table style="border: 0; margin:auto;">
|
||
<tbody>
|
||
<tr>
|
||
<td><b>|x|</b> looks like this:</td>
|
||
<td> </td>
|
||
<td><img src="../sets/images/function-absolute.svg" alt="Absolute Value function" width="241" height="241" ></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p>At <b>x=0</b> it has a very pointy change!</p>
|
||
<p><b>Does the derivative exist at x=0?</b></p>
|
||
</div>
|
||
<h2>Testing</h2>
|
||
<p>We can test any value "a" by finding if the <a href="limits.html">limit</a> exists:</p>
|
||
<div></div>
|
||
<p class="center large"><span class="intbl"><span class="lim">lim</span>
|
||
<strong>h→0</strong>
|
||
</span> <span class="intbl">
|
||
<em>f(a+h) − f(a)</em>
|
||
<strong>h</strong>
|
||
</span></p>
|
||
<div class="example">
|
||
<h3>Example (continued)</h3>
|
||
<p>Let's calculate the limit for |x| at the value 0:</p>
|
||
<p> </p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">Start with:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
|
||
<strong>h→0</strong>
|
||
</span> <span class="intbl">
|
||
<em>f(a+h) − f(a)</em>
|
||
<strong>h</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">f(x) = |x|:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
|
||
<strong>h→0</strong>
|
||
</span> <span class="intbl">
|
||
<em>|a+h| − |a|</em>
|
||
<strong>h</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">a=0:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
|
||
<strong>h→0</strong>
|
||
</span> <span class="intbl">
|
||
<em>|h| − |0|</em>
|
||
<strong>h</strong>
|
||
</span></span></div>
|
||
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
|
||
<strong>h→0</strong>
|
||
</span> <span class="intbl">
|
||
<em>|h|</em>
|
||
<strong>h</strong>
|
||
</span></span></div>
|
||
</div>
|
||
|
||
<p><b>In fact that limit does not exist!</b> To see why, let's compare left and right side limits:</p>
|
||
<div class="tbl">
|
||
<div class="row"><span class="left">From Left Side:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
|
||
<strong>h→0<sup><span class="hilite">−</span></sup></strong>
|
||
</span> <span class="intbl">
|
||
<em>|h|</em>
|
||
<strong>h</strong>
|
||
</span> = −1</span></div>
|
||
<div class="row"><span class="left">From Right Side:</span><span class="right"><span class="intbl"><span class="lim">lim</span>
|
||
<strong>h→0<sup><span class="hilite">+</span></sup></strong>
|
||
</span> <span class="intbl">
|
||
<em>|h|</em>
|
||
<strong>h</strong>
|
||
</span> = +1</span></div>
|
||
</div>
|
||
<p>The limits are different on either side, so the limit does not exist at x=0</p>
|
||
<p> </p>
|
||
<p class="larger center"> f(x) = |x| is not differentiable at x=0</p>
|
||
|
||
</div>
|
||
<p>A good way to picture this in your mind is to think:</p>
|
||
<p class="center larger">As I zoom in, does the function tend to become a straight line?</p>
|
||
<p class="center"><img src="images/differentiable.svg" alt="differentiable (zoomed is line) vs not differentiable (zoomed is pointy)" width="460" height="140" ></p>
|
||
<p class="center">The absolute value function stays pointy at x=0 even when zoomed in.</p>
|
||
<h2>Other Reasons</h2>
|
||
<p>Here are a few more examples:</p>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="../sets/images/function-floor-graph.svg" alt="Floor function" width="172" height="170" ></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>The <a href="../sets/function-floor-ceiling.html">Floor and Ceiling Functions</a> are not differentiable at integer values, as there is a discontinuity at each jump. But they are differentiable elsewhere.</p></td>
|
||
<td> </td>
|
||
</tr>
|
||
</tbody></table>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td><img src="images/x-1-3-slope.svg" alt="x^(1/3) slope" width="213" height="168" ></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>The Cube root function<b> x<sup>(1/3)</sup></b></p>
|
||
<p>Its derivative is <b>(1/3)x<sup>-(2/3)</sup></b> (by the <a href="derivatives-rules.html">Power Rule</a>)</p>
|
||
<p>At <b>x=0</b> the derivative is undefined, so x<sup>(1/3)</sup> is not differentiable, unless we exclude x=0.</p></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<p><img src="images/func-1-x.svg" alt="1/x graph" width="213" height="168" ></p></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>At <b>x=0</b> the function is not defined so it makes no sense to ask if they are differentiable there.</p>
|
||
<p>To be differentiable at a certain point, the function must first of all be defined there!</p></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<table style="border: 0;">
|
||
<tbody>
|
||
<tr>
|
||
<td><br>
|
||
<img src="images/sin-1-x.svg" alt="sin (1/x) graph" width="213" height="168" ></td>
|
||
<td> </td>
|
||
<td>
|
||
<p>As we head towards x = 0 the function moves up and down faster and faster, so we cannot find a value it is "heading towards".</p>
|
||
<p>So it is not differentiable there.</p></td>
|
||
</tr>
|
||
</tbody></table>
|
||
<p> </p>
|
||
<h2>Different Domain</h2>
|
||
<p>But we can change the domain!</p>
|
||
<div class="example">
|
||
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/absolute-positive.svg" alt="absolute positive graph" width="101" height="102" ></p>
|
||
<h3>Example: The function g(x) = |x| with Domain (0, +∞)</h3>
|
||
<p>The domain is from <b>but not including</b> 0 onwards (all positive values).</p>
|
||
<p><b>Which IS differentiable.</b></p>
|
||
<p><i>And I am "absolutely positive" about that :)</i></p>
|
||
<p class="larger">So the function <b>g(x) = |x| with Domain (0, +∞)</b> is differentiable.</p>
|
||
<p>We could also restrict the domain in other ways to avoid x=0 (such as all negative Real Numbers, all non-zero Real Numbers, etc).</p>
|
||
</div>
|
||
<p> </p>
|
||
<h2>Why Bother?</h2>
|
||
<p>Because when a function is differentiable we can use all the power of calculus when working with it.</p>
|
||
<h2>Continuous</h2>
|
||
<p>When a function is differentiable it is also <a href="continuity.html">continuous</a>.</p>
|
||
<p class="center larger">Differentiable <span class="largest">⇒</span> Continuous</p>
|
||
<p>But a function can be <b>continuous but not differentiable</b>. For example the absolute value function is actually continuous (though not differentiable) at x=0.</p>
|
||
<p> </p>
|
||
<div class="questions">8925, 8926, 8930, 8931, 8927, 8928, 8929, 8932, 8933, 8934</div>
|
||
|
||
<div class="related">
|
||
<a href="derivatives-introduction.html">Introduction to Derivatives</a>
|
||
<a href="index.html">Calculus Index</a>
|
||
</div>
|
||
<!-- #EndEditable -->
|
||
|
||
</article>
|
||
|
||
<div id="adend" class="centerfull noprint"></div>
|
||
<footer id="footer" class="centerfull noprint"></footer>
|
||
<div id="copyrt">Copyright © 2021 MathsIsFun.com</div>
|
||
|
||
</div>
|
||
</body>
|
||
<!-- #EndTemplate -->
|
||
|
||
<!-- Mirrored from www.mathsisfun.com/calculus/differentiable.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:05 GMT -->
|
||
</html>
|