lkarch.org/tools/mathisfun/www.mathsisfun.com/calculus/derivatives-trig-proof.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

217 lines
15 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-trig-proof.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:10 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Derivatives of the Trigonometric Functions</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<style>
.lim {
display: inline-table;
text-align: center;
vertical-align: middle;
margin: 0 4px 0 2px;
border-collapse: collapse;
}
.lim em {
display: table-row;
text-align: center;
font-style: inherit;
}
.lim strong {
display: table-row;
text-align: center;
font-weight: inherit;
font-size: 80%;
line-height: 9px;
}
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Proof of the Derivatives of<br>
sin, cos and tan</h1>
<p class="center">The three most useful derivatives in trigonometry are:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> sin(x) = cos(x)</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> cos(x) = sin(x)</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> tan(x) = sec<sup>2</sup>(x)</p>
Did they just drop out of the sky? Can we prove them somehow?
<h2>Proving the Derivative of Sine</h2>
<p>We need to go back, right back to first principles, the basic formula for derivatives:</p>
<p class="center large"><span class="intbl"><em>dy</em><strong>dx</strong></span> = <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>f(x+Δx)f(x)</em><strong>Δx</strong></span></p>
<p>Pop in sin(x):</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>sin(x+Δx)sin(x)</em><strong>Δx</strong></span></p>
<p>We can then use this <a href="../algebra/trigonometric-identities.html">trigonometric identity</a>: sin(A+B) = sin(A)cos(B) + cos(A)sin(B) to get:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>sin(x)cos(Δx) + cos(x)sin(Δx) sin(x)</em><strong>Δx</strong></span></p>
<p>Regroup:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>sin(x)(cos(Δx)1) + cos(x)sin(Δx)</em><strong>Δx</strong></span></p>
<p>Split into two limits:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>sin(x)(cos(Δx)1)</em><strong>Δx</strong></span> + <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em>cos(x)sin(Δx)</em><strong>Δx</strong></span></p>
<p>And we can bring sin(x) and cos(x) outside the limits because they are functions of x not Δx</p>
<p class="center large">sin(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(Δx)1</em><strong>Δx</strong></span> + cos(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em> sin(Δx)</em><strong>Δx</strong></span></p>
<p>&nbsp;</p>
<p>Now all we have to do is evaluate those two little limits. Easy, right? Ha!</p>
<h2>Limit of <span class="intbl"><em>sin(θ)</em><strong>θ</strong></span></h2>
<p>Starting with</p>
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span> <span class="intbl"><em>sin(θ)</em><strong>θ</strong></span></p>
<p>with the help of some geometry:</p>
<p class="center"><img src="images/derivatives-trig1.svg" alt="circle with radius, angle and tangent"></p>
<p>We can look at areas:</p>
<p class="center larger">Area of triangle AOB <b>&lt;</b> Area of sector AOB <b>&lt;</b> Area of triangle AOC</p>
<p class="center larger"><span class="intbl"><em>1</em><strong>2</strong></span>r<sup>2</sup> sin(θ) <b>&lt;</b> <span class="intbl"><em>1</em><strong>2</strong></span>r<sup>2</sup> θ <b>&lt;</b> <span class="intbl"><em>1</em><strong>2</strong></span>r<sup>2</sup> tan(θ)</p>
<p>Divide all terms by <span class="intbl"><em>1</em><strong>2</strong></span>r<sup>2</sup> sin(θ)</p>
<p class="center large">1 &lt; <span class="intbl"><em>θ</em><strong>sin(θ)</strong></span> &lt; <span class="intbl"><em>1</em><strong>cos(θ)</strong></span></p>
<p>Take the reciprocals:</p>
<p class="center large">1 &gt; <span class="intbl"><em>sin(θ)</em><strong>θ </strong></span> &gt; cos(θ)</p>
<p>Now as θ→0 then cos(θ)→1</p>
<p class="center larger">So <span class="intbl"><em>sin(θ)</em><strong>θ </strong></span> lies between 1 and something that is tending towards 1</p>
<p>So as θ→0 then <span class="intbl"><em>sin(θ)</em><strong>θ </strong></span>→1 and so:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span> <span class="intbl"><em>sin(θ)</em><strong>θ</strong></span> = 1</p>
<p>(Note: we should also prove this is true from the negative side, how about you try with negative values of θ ?)</p>
<h2>Limit of <span class="intbl"><em>cos(θ)1</em><strong>θ</strong></span></h2>
<p>So next we want to find out this one:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span> <span class="intbl"><em>cos(θ)1</em><strong>θ</strong></span></p>
<p>When we multiply top and bottom by cos(θ)+1 we get:</p>
<p class="center large"><span class="intbl"><em>(cos(θ)1)(cos(θ)+1)</em><strong>θ(cos(θ)+1)</strong></span> = <span class="intbl"><em>cos<sup>2</sup>(θ)1</em><strong>θ(cos(θ)+1)</strong></span></p>
<p>Now we use this <a href="../algebra/trigonometric-identities.html">trigonometric identity</a> based on <a href="../pythagoras.html">Pythagoras' Theorem</a>:</p>
<p class="center large">cos<sup>2</sup>(x) + sin<sup>2</sup>(x) = 1</p>
<p>Rearranged to this form:</p>
<p class="center large">cos<sup>2</sup>(x) 1 = sin<sup>2</sup>(x)</p>
<p>And the limit we started with can become:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span> <span class="intbl"><em>sin<sup>2</sup>(θ)</em><strong>θ(cos(θ)+1)</strong></span></p>
<p>That looks worse! But is really better because we can turn it into two limits multiplied together:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span><span class="intbl"><em>sin(θ)</em><strong>θ</strong></span> × <span class="lim"><em>lim</em><strong>θ→0</strong></span><span class="intbl"><em>sin(θ)</em><strong>cos(θ)+1</strong></span></p>
<p>We know the first limit (we worked it out above), and the second limit doesn't need much work because<b> at θ=0</b> we know directly that <span class="intbl"><em>sin(0)</em><strong>cos(0)+1</strong></span> = 0, so:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>θ→0</strong></span><span class="intbl"><em>sin(θ)</em><strong>θ</strong></span> × <span class="lim"><em>lim</em><strong>θ→0</strong></span><span class="intbl"><em>sin(θ)</em><strong>cos(θ)+1</strong></span> = 1 × 0 = 0</p>
<h2>Putting it Together</h2>
<p>So what were we trying to do again? Oh that's right, we really wanted to work out this:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = sin(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(Δx)1</em><strong>Δx</strong></span> + cos(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em> sin(Δx)</em><strong>Δx</strong></span></p>
<p>We can now put in the values we just worked out and get:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = sin(x) × 0 + cos(x) × 1</p>
<p>And so (ta da!):</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = cos(x)</p>
<h2>The Derivative of Cosine</h2>
<p>Now on to cosine!</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>cos(x) = <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(x+Δx)cos(x)</em><strong>Δx</strong></span></p>
<p>This time we will use the <a href="../algebra/trigonometric-identities.html">angle formula</a> <span class="center"><b>cos(A+B) = cos(A)cos(B) sin(A)sin(B)</b></span>:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(x)cos(Δx) sin(x)sin(Δx) cos(x)</em><strong>Δx</strong></span></p>
<p>Rearrange to:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(x)(cos(Δx)1) sin(x)sin(Δx)</em><strong>Δx</strong></span></p>
<p>Split into two limits:</p>
<p class="center large"><span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(x)(cos(Δx)1)</em><strong>Δx</strong></span> <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em>sin(x)sin(Δx)</em><strong>Δx</strong></span></p>
<p>We can bring cos(x) and sin(x) outside the limits because they are functions of x not Δx</p>
<p class="center large">cos(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span> <span class="intbl"><em>cos(Δx)1</em><strong>Δx</strong></span> sin(x) <span class="lim"><em>lim</em><strong>Δx→0</strong></span><span class="intbl"><em> sin(Δx)</em><strong>Δx</strong></span></p>
<p>And using our knowledge from above:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> cos(x) = cos(x) × 0 sin(x) × 1</p>
<p>And so:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> cos(x) = sin(x)</p>
<h2>The Derivative of Tangent</h2>
<p>To find the derivative of tan(x) we can use this <a href="../algebra/trigonometric-identities.html">identity</a>:</p>
<p class="center large">tan(x) = <span class="intbl"><em>sin(x)</em><strong>cos(x)</strong></span></p>
<p>So we start with:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = <span class="intbl"><em>d</em><strong>dx</strong></span>(<span class="intbl"><em>sin(x)</em><strong>cos(x)</strong></span>)</p>
<div class="def">
<p>Now we can use the <a href="derivatives-rules.html">quotient rule</a> of derivatives:</p>
<p class="center larger">(<span class="intbl"><em>f</em><strong>g</strong></span>) = <span class="intbl"><em>gf fg</em><strong>g<sup>2</sup></strong></span></p>
</div>
<p>And we get:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = <span class="intbl"><em>cos(x) × cos(x) sin(x) × sin(x)</em><strong>cos<sup>2</sup>(x)</strong></span></p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = <span class="intbl"><em>cos<sup>2</sup>(x) + sin<sup>2</sup>(x)</em><strong>cos<sup>2</sup>(x)</strong></span></p>
<p>Then use this identity:</p>
<p class="center larger">cos<sup>2</sup>(x) + sin<sup>2</sup>(x) = 1</p>
<p>To get</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) =<span class="intbl"><em>1</em><strong>cos<sup>2</sup>(x)</strong></span></p>
<p>Done!</p>
<p>But most people like to use the fact that cos = <span class="intbl"><em>1</em><strong>sec</strong></span> to get:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = sec<sup>2</sup>(x)</p>
<p>Note: we can also do this:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = <span class="intbl"><em>cos<sup>2</sup>(x) + sin<sup>2</sup>(x)</em><strong>cos<sup>2</sup>(x)</strong></span></p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>tan(x) = 1 + <span class="intbl"><em> sin<sup>2</sup>(x)</em><strong>cos<sup>2</sup>(x)</strong></span> = 1 + tan<sup>2</sup>(x)</p>
<p>(And, yes, 1 + tan<sup>2</sup>(x) = sec<sup>2</sup>(x) anyway, see <a href="../algebra/trig-magic-hexagon.html">Magic Hexagon</a> )</p>
<p class="center">&nbsp;</p>
<h2>Taylor Series</h2>
<p>Just on a fun side note, we can use the <a href="../algebra/taylor-series.html">Taylor Series</a> expansions and differentiate term by term.</p>
<div class="example">
<h3>Example: sin(x) and cos(x)</h3>
<p>The Taylor Series expansion for sin(x) is</p>
<p class="center large">sin(x) = x <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span> + <span class="intbl"><em>x<sup>5</sup></em><strong>5!</strong></span> ...</p>
<p>Differentiate term by term:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> sin(x) = 1 <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> ...</p>
<p>Which perfectly matches the Taylor Series expansion for cos(x)</p>
<p class="center large">cos(x) = 1 <span class="intbl"><em>x<sup>2</sup></em><strong>2!</strong></span> + <span class="intbl"><em>x<sup>4</sup></em><strong>4!</strong></span> ...</p>
<p>&nbsp;</p>
<p>Let's also differentiate <b>that</b> term by term:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span> cos(x) = 0 x + <span class="intbl"><em>x<sup>3</sup></em><strong>3!</strong></span><strong> </strong> ...</p>
<p>Which is the <b>negative</b> of the Taylor Series expansion for sin(x) we started with!</p>
</div>
<p>But this is "circular reasoning" because the original expansion of the Taylor Series already use the rules "the derivative of sin(x) is cos(x)" and "the derivative of cos(x) is sin(x)".</p>
<p>&nbsp;</p>
<div class="related">
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-trig-proof.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:11 GMT -->
</html>