Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

534 lines
21 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-rules.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:01 GMT -->
<head>
<meta charset="UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Derivative Rules</title>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="preload" href="../images/style/font-champ-bold.ttf" as="font" type="font/ttf" crossorigin>
<link rel="preload" href="../style4.css" as="style">
<link rel="preload" href="../main4.js" as="script">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js" defer></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-29771508-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-29771508-1');
</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun Advanced"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Derivative Rules</h1>
<p class="center"><i>The <a href="derivatives-introduction.html">Derivative</a> tells us the slope of a function at any point.</i></p>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/slope-examples.svg" alt="slope examples y=3, slope=0; y=2x, slope=2" style="width:139px; height:250px; min-width:139px;"></p>
<p>There are <b>rules</b> we can follow to find many derivatives.</p>
<p>For example:</p>
<ul>
<li>The slope of a <b>constant</b> value (like 3) is always 0</li>
<li>The slope of a <b>line</b> like 2x is 2, or 3x is 3 etc</li>
<li>and so on.</li>
</ul>
<p>Here are useful rules to help you work out the derivatives of many functions (with <a href="#examples">examples below</a>). Note: the little mark <span class="hilite"></span> means <b>derivative of</b>, and f and g are functions.</p>
<div style="clear:both"></div>
<div class="beach">
<table style="border: 0; margin:auto;">
<tbody>
<tr>
<th>Common Functions</th>
<th align="center" width="120">Function<br>
</th>
<th align="center" width="120">Derivative<br>
</th>
</tr>
<tr>
<td>Constant</td>
<td style="text-align:center;">c</td>
<td style="text-align:center;">0</td>
</tr>
<tr>
<td>Line</td>
<td style="text-align:center;">x</td>
<td style="text-align:center;">1</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">ax</td>
<td style="text-align:center;">a</td>
</tr>
<tr>
<td>Square</td>
<td style="text-align:center;">x<sup>2</sup></td>
<td style="text-align:center;">2x</td>
</tr>
<tr>
<td>Square Root</td>
<td style="text-align:center;">√x</td>
<td style="text-align:center;">(½)x<sup></sup></td>
</tr>
<tr>
<td>Exponential</td>
<td style="text-align:center;">e<sup>x</sup></td>
<td style="text-align:center;">e<sup>x</sup></td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">a<sup>x</sup></td>
<td style="text-align:center;">ln(a) a<sup>x</sup></td>
</tr>
<tr>
<td>Logarithms</td>
<td style="text-align:center;">ln(x)</td>
<td style="text-align:center;">1/x</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">log<sub>a</sub>(x)</td>
<td style="text-align:center;">1 / (x ln(a))</td>
</tr>
<tr>
<td>Trigonometry (x is in <a href="../geometry/radians.html">radians</a>)</td>
<td style="text-align:center;">sin(x)</td>
<td style="text-align:center;">cos(x)</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">cos(x)</td>
<td style="text-align:center;">sin(x)</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">tan(x)</td>
<td style="text-align:center;">sec<sup>2</sup>(x)</td>
</tr>
<tr>
<td>Inverse Trigonometry</td>
<td style="text-align:center;">sin<sup>-1</sup>(x)</td>
<td style="text-align:center;">1/√(1x<sup>2</sup>)</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">cos<sup>-1</sup>(x)</td>
<td style="text-align:center;">1/√(1x<sup>2</sup>)</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">tan<sup>-1</sup>(x)</td>
<td style="text-align:center;">1/(1+x<sup>2</sup>)</td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">&nbsp;</td>
<td style="text-align:center;">&nbsp;</td>
</tr>
<tr>
<th>Rules</th>
<th align="center">Function<br>
</th>
<th align="center">Derivative<br>
</th>
</tr>
<tr>
<td>Multiplication by constant</td>
<td style="text-align:center;">cf</td>
<td style="text-align:center;">cf</td>
</tr>
<tr>
<td><a href="power-rule.html">Power Rule</a></td>
<td style="text-align:center;">x<sup>n</sup></td>
<td style="text-align:center;">nx<sup>n1</sup></td>
</tr>
<tr>
<td>Sum Rule</td>
<td style="text-align:center;">f + g</td>
<td style="text-align:center;">f + g</td>
</tr>
<tr>
<td>Difference Rule</td>
<td style="text-align:center;">f - g</td>
<td style="text-align:center;">f g</td>
</tr>
<tr>
<td><a href="product-rule.html">Product Rule</a></td>
<td style="text-align:center;">fg</td>
<td style="text-align:center;">f g + f g</td>
</tr>
<tr>
<td>Quotient Rule</td>
<td style="text-align:center;">f/g</td>
<td style="text-align:center;"><span class="intbl"><em>f g g f</em><strong>g<sup>2</sup></strong></span></td>
</tr>
<tr>
<td>Reciprocal Rule</td>
<td style="text-align:center;">1/f</td>
<td style="text-align:center;">f/f<sup>2</sup></td>
</tr>
<tr>
<td>&nbsp;</td>
<td style="text-align:center;">&nbsp;</td>
<td style="text-align:center;">&nbsp;</td>
</tr>
<tr>
<td>Chain Rule<br>
(as <a href="../sets/functions-composition.html">"Composition of Functions")</a></td>
<td style="text-align:center;">f º g</td>
<td style="text-align:center;">(f º g) × g</td>
</tr>
<tr>
<td>Chain Rule
(using )</td>
<td style="text-align:center;">f(g(x))</td>
<td style="text-align:center;">f(g(x))g(x)</td>
</tr>
<tr>
<td>Chain Rule
(using <span class="intbl">
<em>d</em>
<strong>dx</strong>
</span> )</td>
<td colspan="2" align="center"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = <span class="intbl">
<em>dy</em>
<strong>du</strong>
</span><span class="intbl">
<em>du</em>
<strong>dx</strong>
</span></td>
</tr>
</tbody></table>
<div class="words">
<p>"The derivative of" is also written <span class="intbl">
<em>d</em>
<strong>dx</strong>
</span></p>
<p>So <span class="center large"><span class="intbl">
<em>d</em>
<strong>dx</strong>
</span>sin(x)</span> and <span class="center large">sin(x)</span> both mean "The derivative of sin(x)"</p>
</div>
</div>
<h2><a name="examples"></a>Examples</h2>
<div class="example">
<h3>Example: what is the derivative of sin(x) ?</h3>
<p>From the table above it is listed as being <b>cos(x)</b></p>
<p>It can be written as:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = cos(x)</p>
<p>Or:</p>
<p class="center large">sin(x) = cos(x)</p>
</div>
<h3>Power Rule</h3>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>3</sup> ?</h3>
<p>The question is asking "what is the derivative of x<sup>3</sup> ?"</p>
<p>We can use the <a href="power-rule.html">Power Rule</a>, where n=3:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>n</sup> = nx<sup>n1</sup></p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>3</sup> = 3x<sup>31</sup> = <b>3x<sup>2</sup></b></p>
<p>(In other words the derivative of x<sup>3</sup> is 3x<sup>2</sup>)</p>
</div>
<p>So it is simply this:</p>
<p class="center"><img src="images/power-rule.svg" alt="power rule x^3 -&gt; 3x^2" style="width:66px; height:107px; min-width:66px;"><br>
"multiply by power<br>
then reduce power by 1"</p>
<p>It can also be used in cases like this:</p>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dx</strong></span>(1/x) ?</h3>
<p>1/x is also <b>x<sup>-1</sup></b></p>
<p>We can use the Power Rule, where n = 1:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>n</sup> = nx<sup>n1</sup></p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>-1</sup> = 1x<sup>-11</sup></p>
<p class="center large">= x<sup>-2</sup></p>
<p class="center large">= <span class="intbl"><em>1</em><strong>x<sup>2</sup></strong></span></p>
</div>
<p>So we just did this:</p>
<p class="center"><img src="images/power-rule-1.svg" alt="power rule x^-1 -&gt; -x^-2" style="width:73px; height:107px; min-width:73px;"><br>
which simplifies to <b>1/x<sup>2</sup></b></p>
<h3>Multiplication by constant</h3>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dx</strong></span>5x<sup>3 </sup>?</h3>
<p class="center large">the derivative of cf = cf</p>
<p class="center large">the derivative of 5f = 5f</p>
<p>We know (from the Power Rule):</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>3</sup> = 3x<sup>31</sup> = 3x<sup>2</sup></p>
<p>So:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>5x<sup>3</sup> = 5<span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>3</sup> = 5 × 3x<sup>2</sup> = <b>15x<sup>2</sup></b></p>
</div>
<h3>Sum Rule</h3>
<div class="example">
<h3>Example: What is the derivative of x<sup>2</sup>+x<sup>3 </sup>?</h3>
<p>The Sum Rule says:</p>
<p class="center large">the derivative of f + g = f + g</p>
<p>So we can work out each derivative separately and then add them.</p>
<p>Using the Power Rule:</p>
<ul>
<li><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>2</sup> = 2x</li>
<li><span class="intbl"><em>d</em><strong>dx</strong></span>x<sup>3</sup> = 3x<sup>2</sup></li>
</ul>
<p>And so:</p>
<p class="center large">the derivative of x<sup>2</sup> + x<sup>3</sup> = <b>2x + 3x<sup>2</sup></b></p>
</div>
<h3>Difference Rule</h3>
<p>What we differentiate with respect to doesn't have to be <b>x</b>, it could be anything. In this case <b>v</b>:</p>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dv</strong></span>(v<sup>3</sup>v<sup>4</sup>) ?</h3>
<p>The Difference Rule says</p>
<p class="center large">the derivative of f g = f g</p>
<p>So we can work out each derivative separately and then subtract them.</p>
<p>Using the Power Rule:</p>
<ul>
<li><span class="intbl"><em>d</em><strong>dv</strong></span>v<sup>3</sup> = 3v<sup>2</sup></li>
<li><span class="intbl"><em>d</em><strong>dv</strong></span>v<sup>4</sup> = 4v<sup>3</sup></li>
</ul>
<p>And so:</p>
<p class="center large">the derivative of v<sup>3</sup> v<sup>4</sup> = <b> 3v<sup>2</sup> 4v<sup>3</sup></b></p>
</div>
<h3>Sum, Difference, Constant Multiplication And Power Rules</h3>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dz</strong></span>(5z<sup>2</sup> + z<sup>3</sup> 7z<sup>4</sup>) ?</h3>
<p>Using the Power Rule:</p>
<ul>
<li><span class="intbl"><em>d</em><strong>dz</strong></span>z<sup>2</sup> = 2z</li>
<li><span class="intbl"><em>d</em><strong>dz</strong></span>z<sup>3</sup> = 3z<sup>2</sup></li>
<li><span class="intbl"><em>d</em><strong>dz</strong></span>z<sup>4</sup> = 4z<sup>3</sup></li>
</ul>
<p>And so:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dz</strong></span>(5z<sup>2</sup> + z<sup>3</sup> 7z<sup>4</sup>) = 5 × 2z + 3z<sup>2</sup> 7 × 4z<sup>3</sup><br>
= <b>10z + 3z<sup>2</sup> 28z<sup>3</sup></b></p>
</div>
<p>&nbsp;</p>
<h3>Product Rule</h3>
<div class="example">
<h3>Example: What is the derivative of cos(x)sin(x) ?</h3>
<p>The Product Rule says:</p>
<p class="center large">the derivative of fg = f g + f g</p>
<p>In our case:</p>
<ul>
<li>f = cos</li>
<li>g = sin</li>
</ul>
<p>We know (from the table above):</p>
<ul>
<li><span class="intbl"><em>d</em><strong>dx</strong></span>cos(x) = sin(x)</li>
<li><span class="intbl"><em>d</em><strong>dx</strong></span>sin(x) = cos(x)</li>
</ul>
<p>So:</p>
<p class="center large">the derivative of cos(x)sin(x) = cos(x)cos(x) sin(x)sin(x)<br>
<br>
= <b>cos<sup>2</sup>(x) sin<sup>2</sup>(x)</b></p>
</div>
<p>&nbsp;</p>
<h3>Quotient Rule</h3>
<p>To help you remember:</p>
<p class="center large">(<span class="intbl"><em>f</em><strong>g</strong></span>) = <span class="intbl"><em>gf fg</em><strong>g<sup>2</sup></strong></span></p>
<p>The derivative of "High over Low" is:</p>
<p class="center"><i><span class="large">"Low dHigh minus High dLow, over the line and square the Low"</span></i></p>
<div class="example">
<h3>Example: What is the derivative of cos(x)/x ?</h3>
<p>In our case:</p>
<ul>
<li>f = cos</li>
<li>g = x</li>
</ul>
<p>We know (from the table above):</p>
<ul>
<li>f' = sin(x)</li>
<li>g' = 1</li>
</ul>
<p>So:</p>
<p class="center large">the derivative of <span class="intbl"><em>cos(x)</em><strong>x</strong></span> = <span class="intbl"><em>Low dHigh minus High dLow</em><strong>square the Low</strong></span></p>
<p class="center large">= <span class="intbl"><em>x(sin(x)) cos(x)(1)</em><strong>x<sup>2</sup></strong></span></p>
<p class="center large">= <span class="intbl"><em>xsin(x) + cos(x)</em><strong>x<sup>2</sup></strong></span></p>
</div>
<p>&nbsp;</p>
<h3>Reciprocal Rule</h3>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dx</strong></span>(1/x) ?</h3>
<p>The Reciprocal Rule says:</p>
<p class="center large">the derivative of <span class="intbl"><em>1</em><strong>f</strong></span> = <span class="intbl"><em>f</em><strong>f<sup>2</sup></strong></span></p>
<p><b>With f(x)= x, we know that f(x) = 1</b></p>
<p>So:</p>
<p class="center large">the derivative of <span class="intbl"><em>1</em><strong>x</strong></span> = <span class="intbl"><em>1</em><strong>x<sup>2</sup></strong></span></p>
<p>Which is the same result we got above using the Power Rule.</p>
</div>
<h3>Chain Rule</h3>
<div class="example">
<h3>Example: What is <span class="intbl">
<em>d</em>
<strong>dx</strong>
</span>sin(x<sup>2</sup>) ?</h3>
<p><b>sin(x<sup>2</sup>)</b> is made up of <b>sin()</b> and <b>x<sup>2</sup></b>:</p>
<ul>
<li>f(g) = sin(g)</li>
<li>g(x) = x<sup>2</sup></li>
</ul>
<p>The Chain Rule says:</p>
<p class="center large">the derivative of f(g(x)) = f'(g(x))g'(x)</p>
<p>The individual derivatives are:</p>
<ul>
<li>f'(g) = cos(g)</li>
<li>g'(x) = 2x</li>
</ul>
<p>So:</p>
<p class="center large"><span class="intbl">
<em>d</em>
<strong>dx</strong>
</span>sin(x<sup>2</sup>) = cos(g(x)) (2x)</p>
<p class="center large">= 2x cos(x<sup>2</sup>)</p>
</div> <p>Another way of writing the Chain Rule is: <span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = <span class="intbl">
<em>dy</em>
<strong>du</strong>
</span><span class="intbl">
<em>du</em>
<strong>dx</strong>
</span></p>
<p>Let's do the previous example again using that formula:</p>
<div class="example">
<h3>Example: What is <span class="intbl">
<em>d</em>
<strong>dx</strong>
</span>sin(x<sup>2</sup>) ?</h3>
<p class="center"><span class="intbl">
<em>dy</em>
<strong>dx</strong>
</span> = <span class="intbl">
<em>dy</em>
<strong>du</strong>
</span><span class="intbl">
<em>du</em>
<strong>dx</strong>
</span></p>
<p>Let u = x<sup>2</sup>, so y = sin(u):</p>
<p class="center"><span class="intbl">
<em>d</em>
<strong>dx</strong></span> sin(x<sup>2</sup>) = <span class="intbl">
<em>d</em>
<strong>du</strong>
</span>sin(u)<span class="intbl">
<em>d</em>
<strong>dx</strong>
</span>x<sup>2</sup></p>
<p>Differentiate each:</p>
<p class="center"><span class="intbl">
<em>d</em>
<strong>dx</strong>
</span> sin(x<sup>2</sup>) = cos(u) (2x)</p>
<p>Substitute back u = x<sup>2</sup> and simplify:</p>
<p class="center large"><span class="intbl">
<em>d</em>
<strong>dx</strong>
</span> sin(x<sup>2</sup>) = 2x cos(x<sup>2</sup>)</p>
<p>Same result as before (thank goodness!)</p>
</div>
<p>Another couple of examples of the Chain Rule:</p>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dx</strong></span>(1/cos(x)) ?</h3>
<p><b>1/cos(x)</b> is made up of <b>1/g</b> and <b>cos()</b>:</p>
<ul>
<li>f(g) = 1/g</li>
<li>g(x) = cos(x)</li>
</ul>
<p>The Chain Rule says:</p>
<p class="center large">the derivative of f(g(x)) = f(g(x))g(x)</p>
<p>The individual derivatives are:</p>
<ul>
<li>f'(g) = 1/(g<sup>2</sup>)</li>
<li>g'(x) = sin(x)</li>
</ul>
<p>So:</p>
<p class="center large">(1/cos(x)) = <span class="intbl"><em>1</em><strong>g(x)<sup>2</sup></strong></span>(sin(x))</p>
<p class="center large"><b>= <span class="intbl"><em>sin(x)</em><strong>cos<sup>2</sup>(x)</strong></span></b></p>
<p>Note: <span class="intbl"><em>sin(x)</em><strong>cos<sup>2</sup>(x)</strong></span> is also <span class="intbl"><em>tan(x)</em><strong>cos(x)</strong></span> or many other forms.</p>
</div>
<p>&nbsp;</p>
<div class="example">
<h3>Example: What is <span class="intbl"><em>d</em><strong>dx</strong></span>(5x2)<sup>3</sup> ?</h3>
<p>The Chain Rule says:</p>
<p class="center large">the derivative of f(g(x)) = f(g(x))g(x)</p>
<p><b>(5x2)<sup>3</sup></b> is made up of <b>g<sup>3</sup></b> and <b>5x2</b>:</p>
<ul>
<li>f(g) = g<sup>3</sup></li>
<li>g(x) = 5x2</li>
</ul>
<p>The individual derivatives are:</p>
<ul>
<li>f'(g) = 3g<sup>2</sup> (by the Power Rule)</li>
<li>g'(x) = 5</li>
</ul>
<p>So:</p>
<p class="center large"><span class="intbl"><em>d</em><strong>dx</strong></span>(5x2)<sup>3</sup> = (3g(x)<sup>2</sup>)(5) = 15(5x2)<sup>2</sup></p>
</div>
<p>&nbsp;</p>
<div class="questions">6800, 6801, 6802, 6803, 6804, 6805, 6806, 6807, 6808, 6809, 6810, 6811, 6812</div>
<div class="related">
<a href="derivatives-introduction.html">Introduction to Derivatives</a>
<a href="derivatives-partial.html">Partial Derivatives</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright &copy; 2021 MathsIsFun.com</div>
</div>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/derivatives-rules.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:02 GMT -->
</html>