Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

1025 lines
18 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/calculus/arc-length.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:14 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<!-- #BeginEditable "doctitle" -->
<title>Arc Length (Calculus)</title>
<script language="JavaScript" type="text/javascript">Author='Pierce, Rod and Sayid, Khalil';</script>
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"]];</script>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, videos and worksheets. For K-12 kids, teachers and parents.">
<style>
.intgl {display:inline-block; margin: -4% 0 4% -1%; transform: translateX(20%) translateY(35%);}
.intgl .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -5px 8px;}
.intgl .symb {font: 180% Georgia;}
.intgl .symb:before { content: "\222B";}
.intgl .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
.sigma {display:inline-block; margin: -4% 0 4% -1%; transform: translateX(20%) translateY(35%);}
.sigma .to {text-align:center; width:2em; font: 0.8em Verdana; margin: 0 0 -12px 0;}
.sigma .symb {font: 200% Georgia; transform: translateY(16%); }
.sigma .symb:before { content: "\03A3";}
.sigma .from {text-align:center; width:2em; font: 0.8em Verdana; overflow:visible; }
</style>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta name="referrer" content="always">
<link rel="stylesheet" href="../style4.css">
<script src="../main4.js"></script>
<script>document.write(gTagHTML())</script>
</head>
<body id="bodybg" class="adv">
<div id="stt"></div>
<div id="adTop"></div>
<header>
<div id="hdr"></div>
<div id="tran"></div>
<div id="adHide"></div>
<div id="cookOK"></div>
</header>
<div class="mid">
<nav>
<div id="menuWide" class="menu"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo-adv.svg" alt="Math is Fun"></a></div>
<div id="search" role="search"></div>
<div id="linkto"></div>
<div id="menuSlim" class="menu"></div>
<div id="menuTiny" class="menu"></div>
</nav>
<div id="extra"></div>
<article id="content" role="main">
<!-- #BeginEditable "Body" -->
<h1 class="center">Arc Length</h1>
<p class="center"><b>Using Calculus to find the length of a curve</b>.<br>
<i>(Please read about <a href="derivatives-introduction.html">Derivatives</a> and <a href="integration-introduction.html"> Integrals</a> first)
</i></p>
<p>Imagine we want to find the length of a curve between two points. And the curve is smooth (the derivative is <a href="continuity.html">continuous</a>).</p>
<p class="center"><img src="images/arc-length-2.svg" alt="arc length curve"></p>
<p>First we break the curve into small lengths and use the <a href="../algebra/distance-2-points.html">Distance Between 2 Points</a> formula on each length to come up with an approximate answer:</p>
<p class="centerfull"><img src="images/arc-length-1.gif" alt="arc length between points" height="239" width="360"></p>
<p>The distance from <b>x<sub>0</sub></b> to <b>x<sub>1</sub></b> is:</p>
<p class="center large">S<sub>1</sub> = <span style="font-size: 120%;"></span><span class="overline"> (x<sub>1</sub> x<sub>0</sub>)<sup>2</sup> + (y<sub>1</sub> y<sub>0</sub>)<sup>2</sup></span></p>
<p>And let's use&nbsp;<b> Δ</b> (delta) to mean the difference between values, so it becomes:</p>
<p class="center large">S<sub>1</sub> = <span style="font-size: 120%;"></span><span class="overline"> <span class="overline">(Δx<sub>1</sub>)<sup>2</sup> + (Δy<sub>1</sub>)<sup>2</sup></span></span></p>
<p>Now we just need lots more:</p>
<p class="center large">S<sub>2</sub> = <span style="font-size: 120%;"></span><span class="overline">(Δx<sub>2</sub>)<sup>2</sup> + (Δy<sub>2</sub>)<sup>2</sup></span><span style="border-top:1px solid; "></span><br>
S<sub>3</sub> = <span style="font-size: 120%;"></span><span class="overline">(Δx<sub>3</sub>)<sup>2</sup> + (Δy<sub>3</sub>)<sup>2</sup></span><span style="border-top:1px solid; "></span><br>
...<br>
...<br>
S<sub>n</sub> = <span style="font-size: 120%;"></span><span class="overline">(Δx<sub>n</sub>)<sup>2</sup> + (Δy<sub>n</sub>)<sup>2</sup></span><span class="overline"></span></p>
<p>&nbsp;</p>
<p>We can write all those many lines in just <b>one line</b> using a <a href="../algebra/sigma-notation.html">Sum</a>:</p>
<!-- s APR SIG{i=1, n} SQR (DELx_i~)^2 + (DELy_i~)^2 -->
<div class="center large">
S ≈
<div class="sigma">
<div class="to">n</div>
<div class="symb"></div>
<div class="from">i=1</div>
</div>
<!-- SIG{i=1, n} -->
<span style="font-size: 120%;"></span><span class="overline">(Δx<sub>i</sub>)<sup>2</sup> + (Δy<sub>i</sub>)<sup>2</sup></span>
</div>
<p>But we are still doomed to a large number of calculations!</p>
<p>Maybe we can make a big spreadsheet, or write a program to do the calculations ... but lets try something else.</p>
<p>We have a cunning plan:</p>
<ul>
<li>have all the <b>Δx<sub>i</sub></b> be <b>the same</b> so we can extract them from inside the square root</li>
<li>and then turn the sum into an integral.</li>
</ul>
<p>Let's go:</p>
<p>First, divide <i>and</i> multiply <b>Δy<sub>i</sub></b> by <b>Δx<sub>i</sub></b>:</p>
<div class="center large">
S ≈
<div class="sigma">
<div class="to">n</div>
<div class="symb"></div>
<div class="from">i=1</div>
</div>
<!-- SIG{i=1, n} -->
<span style="font-size: 120%;"></span><span class="overline">(Δx<sub>i</sub>)<sup>2</sup> + (Δx<sub>i</sub>)<sup>2</sup>(Δy<sub>i</sub>/Δx<sub>i</sub>)<sup>2</sup></span>
</div>
<p>Now factor out <b>(Δx<sub>i</sub>)<sup>2</sup></b>:</p>
<div class="center large">
S ≈
<div class="sigma">
<div class="to">n</div>
<div class="symb"></div>
<div class="from">i=1</div>
</div>
<!-- SIG{i=1, n} -->
<span style="font-size: 120%;"></span><span class="overline">(Δx<sub>i</sub>)<sup>2</sup>(1 + (Δy<sub>i</sub>/Δx<sub>i</sub>)<sup>2</sup>)</span>
</div>
<p>Take <b>(Δx<sub>i</sub>)<sup>2</sup></b> out of the square root:</p>
<div class="center large">
S ≈
<div class="sigma">
<div class="to">n</div>
<div class="symb"></div>
<div class="from">i=1</div>
</div>
<!-- SIG{i=1, n} -->
<span style="font-size: 120%;"></span><span class="overline">1 + (Δy<sub>i</sub>/Δx<sub>i</sub>)<sup>2</sup></span>&nbsp; Δx<sub>i</sub>
</div>
<p>Now, as <b>n approaches infinity</b> (as we&nbsp;head towards an infinite number of slices, and each slice gets smaller) we get:</p>
<div class="center large">
S =
<div style="display:inline-block; text-align:center; transform: translateY(25%);">
<div style=" font-size:130%; font-family: 'Times New Roman', Times, serif; transform: translateY(35%); ">lim</div>
<div style="font-family: 'Times New Roman', Times, serif; ">n→∞</div>
</div>
<div class="sigma">
<div class="to">n</div>
<div class="symb"></div>
<div class="from">i=1</div>
</div>
<!-- SIG{i=1, n} -->
<span style="font-size: 120%;"></span><span class="overline">1 + (Δy<sub>i</sub>/Δx<sub>i</sub>)<sup>2</sup></span>&nbsp; Δx<sub>i</sub>
</div>
<p>We now have an <a href="integration-introduction.html">integral</a>&nbsp; and we write <b>dx</b> to mean the <b>Δx</b> slices are approaching zero in width (likewise for <b>dy)</b>:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">a</div>
</div>
<span style="font-size: 120%;"></span><span class="overline">1+(dy/dx)<sup>2</sup></span> dx
</div>
<p>And <b>dy/dx</b> is the <a href="derivatives-introduction.html">derivative</a> of the function f(x), which can also be written<b> f(x)</b>:</p>
<div class="def">
<div class="center larger">S =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">a</div>
</div>
<span style="font-size: 120%;"></span><span class="overline">1+(f(x))<sup>2</sup></span> dx<br>
<b>The Arc Length Formula</b>
</div>
</div>
<p>And now suddenly we are in a much better place, we don't need to add up lots of slices, we can calculate an exact answer (if we can solve the differential and integral).</p>
<p><i>Note: the integral also works with respect to y, useful if we happen to know x=g(y):</i></p>
<div class="center large">S =
<div class="intgl">
<div class="to">d</div>
<div class="symb"></div>
<div class="from">c</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+(g(y))<sup>2</sup></span> dy
</div>
<p>So our steps are:</p>
<ul>
<li>Find the derivative of <b>f(x)</b></li>
<li>Solve the integral of <b><span style="font-size: 120%;"></span><span style="border-top:2px solid #009; ">1 + (f(x))<sup>2</sup></span> dx</b></li>
</ul>
<p>Some simple examples to begin with:</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/arc-length-4.gif" alt="arc length constant" height="105" width="180"></p>
<h3>Example: Find the length of f(x) = 2 between x=2 and x=3</h3>
<p>f(x) is just a horizontal line, so its derivative is <b>f(x) = 0</b></p>
<p>Start with:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">3</div>
<div class="symb"></div>
<div class="from">2</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+(f(x))<sup>2</sup></span> dx
</div>
<p>Put in <b>f(x) = 0</b>:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">3</div>
<div class="symb"></div>
<div class="from">2</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+0<sup>2</sup></span> dx
</div>
<p>Simplify:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">3</div>
<div class="symb"></div>
<div class="from">2</div>
</div> dx</div>
<p>Calculate the Integral:</p>
<div class="center larger">S = 3 2 = 1<br>
</div>
<p><br></p>
<p>So the arc length between 2 and 3 is 1.&nbsp;Well of course it is, but it's nice that we came up with the right answer!</p>
<p>Interesting point: the "(1 + ...)" part of the Arc Length Formula guarantees we get <b>at least</b> the distance between x values, such as this case where <b> f(x)</b> is zero.</p>
</div>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/arc-length-5.gif" alt="arc length slope" height="106" width="180"></p>
<h3>Example: Find the length of f(x) = x between x=2 and x=3</h3>
<p>The derivative <b>f(x) = 1</b></p>
<p><br>
Start with:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">3</div>
<div class="symb"></div>
<div class="from">2</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+(f(x))<sup>2</sup></span> dx
</div><br>
<p>Put in <b>f(x) = 1</b>:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">3</div>
<div class="symb"></div>
<div class="from">2</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+(1)<sup>2</sup></span> dx
</div>
<p>Simplify:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">3</div>
<div class="symb"></div>
<div class="from">2</div>
</div> <span style="font-size: 120%;"></span><span class="overline">2</span> dx
</div>
<p>Calculate the Integral:</p>
<div class="larger center">
S = <span style="border-top:1px solid; "></span>(32)<span style="font-size: 120%;"></span><span class="overline">2</span> = <span style="font-size: 120%;"></span><span class="overline">2</span>
<div><br>
</div></div>
<p>And the diagonal across a unit square really is the square root of 2, right?</p>
</div>
<p>OK, now for the harder stuff. A real world example.</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/rope-bridge.jpg" alt="rope bridge" height="226" width="300"></p>
<h3>Example: Metal posts have been installed <b>6m apart</b> across a gorge.<br>
<br>
Find the length for the hanging bridge that follows the curve:</h3>
<p class="center large">f(x) = 5 cosh(x/5)</p>
<div style="clear:both"></div>
<p>Here is the actual curve:</p>
<p class="center"><img src="images/catenary-1.gif" alt="catenary graph" height="131" width="480"></p>
<p>Let us solve the general case first!</p>
<p>A hanging cable forms a curve called a <b>catenary</b>:</p>
<p class="center large">f(x) = a cosh(x/a)</p>
<p class="center">Larger values of <b>a</b> have less sag in the middle<br>
And "cosh" is the <a href="../sets/function-hyperbolic.html">hyperbolic cosine</a> function.</p>
<p>The derivative is <b>f(x) = sinh(x/a)</b></p>
<p>The curve is symmetrical, so it is easier to work on just half of the catenary, from the center to an end at "b":</p>
<p><br></p>
<p>Start with:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+(f(x))<sup>2</sup></span> dx
</div>
<p>Put in <b>f(x) = sinh(x/a)</b>:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1 + sinh<sup>2</sup>(x/a)</span> dx
</div>
<p>Use the identity&nbsp; <b>1 + sinh<sup>2</sup>(x/a) = cosh<sup>2</sup>(x/a):</b></p>
<div class="center large">S =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div> <span style="font-size: 120%;"></span><span class="overline">cosh<sup>2</sup>(x/a)</span> dx
</div>
<p>Simplify:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">0</div>
</div> cosh(x/a) dx
</div>
<p>Calculate the Integral:</p>
<p class="center large">S = a sinh(b/a)</p>
<p>Now, remembering the symmetry, let's go from b to +b:</p>
<p class="center larger">S = 2a sinh(b/a)</p>
<p><br></p>
<p>In our <b>specific case</b> a=5 and the 6m span goes from 3 to +3</p>
<p class="center"><span class="large">S = 2×5 sinh(3/5)<br>
= <b>6.367 m</b></span> (to nearest mm)</p>
<p>This is important to know! If we build it exactly 6m in length there is <b>no way</b> we could pull it hard&nbsp;enough for it to meet the posts. But at 6.367m it will work nicely.</p>
</div>
<p>&nbsp;</p>
<div class="example">
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/arc-length-6.gif" alt="arc length graph" height="201" width="120"></p>
<h3>Example: Find the length of y = x<sup>(3/2)</sup> from x = 0 to x = 4.</h3>
<p>&nbsp;</p>
<p>The derivative is <b>y = (3/2)x<sup>(1/2)</sup></b></p>
<p><br></p>
<p>Start with:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">4</div>
<div class="symb"></div>
<div class="from">0</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+(f(x))<sup>2</sup></span> dx
</div>
<p>Put in <b>(3/2)x<sup>(1/2)</sup></b>:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">4</div>
<div class="symb"></div>
<div class="from">0</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+((3/2)x<sup>(1/2)</sup>)<sup>2</sup></span> dx
</div>
<p>Simplify:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">4</div>
<div class="symb"></div>
<div class="from">0</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+(9/4)x</span> dx
</div>
<p>We can use <a href="integration-by-substitution.html">integration by substitution</a>:</p>
<ul>
<li>u = 1 + (9/4)x</li>
<li>du = (9/4)dx</li>
<li>(4/9)du = dx</li>
<li>Bounds: u(0)=1 and u(4)=10</li></ul>
<p>And we get:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">10</div>
<div class="symb"></div>
<div class="from">1</div>
</div> (4/9)<span style="font-size: 120%;"></span><span class="overline">u</span> du
</div>
<p>Integrate:</p>
<p class="center large">S = (8/27) u<sup>(3/2)</sup> from 1 to 10</p>
<p>Calculate:</p>
<p class="center large">S = (8/27) (10<sup>(3/2)</sup> 1<sup>(3/2)</sup>) = <b>9.073...</b></p>
</div>
<h2>Conclusion</h2>
<p>The Arc Length Formula for a function f(x) is:</p>
<div class="center large">S =
<div class="intgl">
<div class="to">b</div>
<div class="symb"></div>
<div class="from">a</div>
</div> <span style="font-size: 120%;"></span><span class="overline">1+(f(x))<sup>2</sup></span> dx
</div>
<p>Steps:</p>
<ul>
<li>Take derivative of f(x)</li>
<li>Write Arc Length Formula</li>
<li>Simplify and solve integral</li>
</ul>
<p>&nbsp;</p>
<div class="questions">
<script>getQ(11382, 11383, 11384, 11385, 11386);</script>&nbsp;
</div>
<div class="related">
<a href="integration-introduction.html">Integrals</a>
<a href="derivatives-introduction.html">Derivatives</a>
<a href="derivatives-rules.html">Derivative Rules</a>
<a href="index.html">Calculus Index</a>
</div>
<!-- #EndEditable -->
</article>
<div id="adend" class="centerfull noprint"></div>
<footer id="footer" class="centerfull noprint"></footer>
<div id="copyrt">Copyright © 2020 MathsIsFun.com</div>
</div>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/calculus/arc-length.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:49:15 GMT -->
</html>