Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

194 lines
11 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en"><!-- #BeginTemplate "../Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/theorems-lemmas.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:11 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Theorems, Corollaries, Lemmas</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." />
<script language="JavaScript" type="text/javascript">reSpell=[["center","centre"]];</script>
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))'>
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Theorems, Corollaries, Lemmas</h1>
<p>&nbsp;</p>
<p>What are all those things? They sound so impressive!</p>
<p>Well, they are basically just <b>facts</b>: some result that has been arrived at.</p>
<ul>
<li>A Theorem is a <b>major</b> result<br />
</li>
<li>A Corollary is a theorem that <b>follows on</b> from another theorem<br />
</li>
<li>A Lemma is a <b>small</b> result (less important than a theorem) </li>
</ul>
<h2>Examples</h2>
<p>Here is an example from Geometry: </p>
<div class="example">
<h3>Example: A Theorem and a Corollary</h3>
<h4>Theorem: </h4>
<p><a href="../angle180.html">Angles on one side of a straight line always add to 180&deg;</a>. </p>
<p align="center"><img src="../geometry/images/angle180.svg" alt="angles add to 180 degrees" /></p>
<p>&nbsp;</p>
<h4> Corollary: </h4>
<p>Following on from that theorem we find that where two lines intersect, the angles opposite each other (called <a href="../geometry/vertical-angles.html">Vertical Angles</a>) are <b>equal</b> (a=c and b=d in the diagram). </p>
<p align="center"><img src="../geometry/images/vertically-opposite-abcd.svg" alt="vertically-opposite-abcd" /><span class="larger"><br>
Angle a = angle c<br>Angle b = angle d</span> </p>
<h4>Proof: </h4>
<p>Angles a and b add to 180&deg; because they are along a line:</p>
<p class="so">a + b = 180&deg;</p>
<p class="so"> a = 180&deg; &minus; b</p>
<p>Likewise for angles b and c</p>
<p class="so">b + c = 180&deg;</p>
<p class="so"> c = 180&deg; &minus; b</p>
<p>And since both a and c equal 180&deg; &minus; b, then</p>
<p class="so">a = c </p>
</div>
<p>&nbsp;</p>
<p>And a slightly more complicated example from Geometry:</p>
<div class="example">
<h3>Example: A Theorem, a Corollary to it, and also a Lemma!</h3>
<h4>Theorem: </h4>
<p align="center"><img src="../geometry/images/inscribed-angle-1.gif" width="183" height="183" alt="inscribed angle 2a and a" /><span class="larger"><br>
An inscribed angle a&deg; is half of the central angle 2a&deg;</span><br />
Called the <b><a href="../geometry/circle-theorems.html">Angle at the Center Theorem</a></b>.</p>
<p><b>Proof: Join the center O to A. </b></p>
<p class="center"><img src="../geometry/images/inscribed-angle-proof.gif" width="186" height="184" alt="inscribed angle proof" /></p>
<p>Triangle ABO is <a href="../triangle.html">isosceles</a> (two equal sides, two equal angles), so:</p>
<div class="so"> Angle OBA = Angle BAO = <b>b&deg;</b> </div>
<p>And, using <a href="../angle180.html">Angles of a Triangle add to 180&deg;</a>:</p>
<div class="so">Angle AOB = (180 &minus; 2b)&deg;</div>
<p>Triangle ACO is isosceles, so:</p>
<div class="so"> Angle OCA = Angle CAO = <b>c&deg;</b> </div>
<p>And, using <a href="../angle180.html">Angles of a Triangle add to 180&deg;</a>:</p>
<div class="so">Angle AOC = (180 &minus; 2c)&deg;</div>
<p>And, using <a href="../angle360.html">Angles around a point add to 360&deg;</a>: </p><div class="tbl">
<div class="row"><span class="left">Angle BOC </span><span class="right">= 360&deg; &minus; (180 &minus; 2b)&deg; &minus; (180 &minus; 2c)&deg; </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 2b&deg; + 2c&deg;</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= 2(b + c)&deg; </span></div>
</div>
<p>Replace <b>b + c</b> with <b>a</b>, we get:</p>
<p class="center larger">Angle BAC = a&deg; and Angle BOC = 2a&deg; </p>
<p align="center"><img src="../geometry/images/inscribed-angle-1.gif" width="183" height="183" alt="inscribed angle 2a and a" /><span class="larger"><br>
</span></p>
<p>And we have proved the theorem.</p>
<p>(That was a &quot;major&quot; result, so is a Theorem.)</p>
<p>&nbsp;</p>
<h4>Corollary</h4>
<p>(This is called the <i>&quot;Angles Subtended by the Same Arc Theorem</i>&quot;, but its really just a <b>Corollary</b> of the <i>&quot;Angle at the Center Theorem&quot;</i>) </p>
<p class="larger">Keeping the endpoints fixed ... ... the angle a&deg; is always the same, no matter where it is on the circumference:</p>
<p class="center"><img src="../geometry/images/inscribed-angle-2.gif" width="181" height="179" alt="inscribed angle a and a" /></p>
<p>So, Angles Subtended by the Same Arc are equal.</p>
<p>   </p>
<h4>Lemma</h4>
<p>(This is sometimes called the <i>&quot;Angle in the Semicircle Theorem&quot;</i>, but its really just a <b>Lemma</b> to the <i>&quot;Angle at the Center Theorem&quot;</i>) </p>
<p class="center"><img src="../geometry/images/inscribed-angle-1.gif" width="183" height="183" alt="inscribed angle 2a and a" /><img src="../geometry/images/angle-semicircle-1a.gif" width="182" height="180" alt="angle semicircle 180 and 90" /></p>
<p>In the special case where the central angle forms a diameter of the circle:</p>
<p class="center larger"> 2a&deg; = 180&deg; , so a&deg; = 90&deg; </p>
<p>So an angle inscribed in a semicircle is always a right angle. </p>
<p>(That was a &quot;small&quot; result, so it is a Lemma.) </p>
</div>
<p>&nbsp;</p>
<p>Another example, related to <a href="../pythagoras.html">Pythagoras' Theorem</a>:</p>
<div class="example">
<h3>Example: </h3>
<h4>Theorem</h4>
<p> If m and n are any two whole numbers and </p>
<ul>
<li>a = m<sup>2</sup> &minus; n<sup>2</sup></li>
<li>b = 2mn</li>
<li>c = m<sup>2</sup> + n<sup>2</sup></li>
</ul>
<p>then a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup><br />
</p>
<p><b>Proof</b>:</p>
<div class="tbl">
<div class="row"><span class="left"><b>a<sup>2</sup> + b<sup>2</sup></b> </span><span class="right">= (m<sup>2</sup> &minus; n<sup>2</sup>)<sup>2</sup> + (2mn)<sup>2</sup> </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= m<sup>4</sup> &minus; 2m<sup>2</sup>n<sup>2</sup> + n<sup>4</sup> + 4m<sup>2</sup>n<sup>2</sup> </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= m<sup>4</sup> + 2m<sup>2</sup>n<sup>2</sup> + n<sup>4</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">= (m<sup>2</sup> + n<sup>2</sup>)<sup>2</sup></span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right"><b>= c<sup>2</sup></b> </span></div>
</div>
<p>(That was a &quot;major&quot; result.)</p>
<p>&nbsp;</p>
<h4>Corollary</h4>
<p> a, b and c, as defined above, are a <a href="../numbers/pythagorean-triples.html">Pythagorean Triple</a></p>
<p> <b>Proof</b>:</p>
<p align="center"> From the Theorem <b>a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></b>, <br>
so a, b and c are a Pythagorean Triple</p>
<p>(That result &quot;followed on&quot; from the previous Theorem.)</p>
<p>&nbsp;</p>
<h4>Lemma</h4>
<p> If m = 2 and n = 1, then we get the Pythagorean triple 3, 4 and 5</p>
<p><b>Proof</b>:</p>
<p>If m = 2 and n = 1, then </p>
<ul>
<li>a = 2<sup>2</sup> &minus; 1<sup>2</sup> = 4 &minus; 1 = <b>3</b></li>
<li>b = 2 &times; 2 &times; 1 = <b>4</b></li>
<li>c = 2<sup>2</sup> + 1<sup>2</sup> = 4 + 1 = <b>5</b></li>
</ul>
<p>(That was a &quot;small&quot; result.) </p>
</div><p>&nbsp;</p>
<div class="related"><a href="index.html">Algebra Index</a></div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/theorems-lemmas.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 01:03:12 GMT -->
</html>