lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/sequences-sums-geometric.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

365 lines
19 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en"><!-- #BeginTemplate "/Templates/Advanced.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/sequences-sums-geometric.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:53 GMT -->
<head>
<!-- #BeginEditable "doctitle" -->
<title>Geometric Sequences and Sums</title>
<meta name="Description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents." /><!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education" />
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width; initial-scale=1.0; user-scalable=true;" />
<meta name="HandheldFriendly" content="true"/>
<meta http-equiv="pics-label" content='(PICS-1.1 "http://www.classify.org/safesurf/" L gen true for "http://www.mathsisfun.com" r (SS~~000 1))' />
<link rel="stylesheet" type="text/css" href="../style3.css" />
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg" class="adv">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun" /></a></div>
<div id="advText">Advanced</div>
<div id="gtran"><script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus"><script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort"><script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search"><script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 align="center">Geometric Sequences and Sums</h1>
<h2>Sequence</h2>
<p>A Sequence is a set of things (usually numbers) that are in order. </p>
<p class="center"><img src="images/sequence.svg" alt="Sequence" />
</p>
<h2>Geometric Sequences</h2>
<p>In a <b>Geometric Sequence</b> each term is found by <b>multiplying</b> the previous term by a <b>constant</b>.</p>
<div class="example">
<h3>Example:</h3>
<div class="simple">
<table align="center">
<tr>
<td><font size="+1">1, 2, 4, 8, 16, 32, 64, 128, 256</font><font size="+1" class="large">, ...</font></td>
</tr>
</table>
</div>
<p align="center">This sequence has a factor of 2 between each number.</p>
<p align="center">Each term (except the first term) is found by <b>multiplying</b> the previous term by <b>2</b>.</p>
<p class="center"><img src="images/geometric-sequence-2.svg" alt="geometric sequence 1,2,4,8,16," /></p>
</div>
<p>&nbsp;</p>
<p><b>In General</b> we write a Geometric Sequence like this:</p>
<p align="center" class="large">{a, ar, ar<sup>2</sup>, ar<sup>3</sup>, ... }</p>
<p>where:</p>
<ul>
<li><b>a</b> is the first term, and </li>
<li><b>r</b> is the factor between the terms (called the <b>&quot;common ratio&quot;</b>)</li>
</ul><p>&nbsp;</p>
<div class="example">
<h3>Example: {1,2,4,8,...}</h3>
<p>The sequence starts at 1 and doubles each time, so</p>
<ul>
<li><b>a=1</b> (the first term) </li>
<li><b>r=2</b> (the &quot;common ratio&quot; between terms is a doubling)</li>
</ul>
<p>And we get:</p>
<p align="center" class="larger"><span class="larger">{a, ar, ar<sup>2</sup>, ar<sup>3</sup>, ... }</span></p>
<p align="center" class="larger">= {1, 1&times;2, 1&times;2<sup>2</sup>, 1&times;2<sup>3</sup>, ... } </p>
<p align="center" class="larger">= {1, 2, 4, 8, ... }</p>
</div><p>&nbsp;</p>
<p class="larger">But be careful, <b>r</b> should not be 0: </p>
<ul>
<li>When <b>r=0</b>, we get the sequence {a,0,0,...} which is not geometric</li>
</ul>
<h2>The Rule</h2>
<p>We can also calculate <b>any term</b> using the Rule:</p>
<div class="center80">
<p align="center"><span class="large">x<sub>n</sub> = ar<sup>(n-1)</sup></span></p>
<p align="center">(We use &quot;n-1&quot; because <span class="large">ar<sup>0</sup></span> is for the 1st term)</p>
</div>
<p>&nbsp;</p>
<div class="example">
<h3>Example:</h3>
<div class="simple">
<table align="center">
<tr>
<td><font size="+1"> 10, 30, 90, 270, 810, 2430, </font><font size="+1" class="large"> ...</font></td>
</tr>
</table>
</div>
<p align="center">This sequence has a factor of 3 between each number.</p>
<p>The values of <b>a</b> and <b>r</b> are:</p>
<ul>
<li><b>a = 10</b> (the first term) </li>
<li><b>r = 3</b> (the &quot;common ratio&quot;)</li>
</ul>
<p>The Rule for any term is:</p>
<p align="center" class="larger"><span class="large">x<sub>n</sub> = 10 &times; 3<sup>(n-1)</sup></span></p>
<p>So, the <b>4th</b> term is:</p>
<p align="center" class="larger">x<sub>4</sub> = 10<span class="large">&times;</span>3<sup>(4-1)</sup> = 10<span class="large">&times;</span>3<sup>3</sup> = 10<span class="large">&times;</span>27 = 270</p>
<p>And the <b>10th</b> term is:</p>
<p align="center" class="larger">x<sub>10 </sub>= 10<span class="large">&times;</span>3<sup>(10-1)</sup> = 10<span class="large">&times;</span>3<sup>9</sup> = 10<span class="large">&times;</span>19683 = 196830</p>
</div>
<p>&nbsp;</p>
<p>A Geometric Sequence can also have <b>smaller and smaller</b> values:</p>
<div class="example">
<h3>Example:</h3>
<div class="simple">
<table align="center">
<tr>
<td><font size="+1">4, 2, 1, 0.5, 0.25, .</font><font size="+1" class="large">..</font></td>
</tr>
</table>
</div>
<p align="center">This sequence has a factor of 0.5 (a half) between each number.<br />
</p>
<p align="center">Its Rule is <b>x<sub>n</sub> = 4 &times; (0.5)<sup>n-1</sup></b></p>
</div>
<h2>Why &quot;Geometric&quot; Sequence? </h2>
<p>Because it is like increasing the dimensions in <b>geometry</b>:</p>
<table border="0" align="center">
<tr>
<td rowspan="4"><img src="images/geometric-sequence.gif" alt="Geometric Sequence" width="72" height="217" /></td>
<td height="55">a line is 1-dimensional and has a length of <span class="large">r</span></td>
</tr>
<tr>
<td height="55">in 2 dimensions a square has an area of <span class="large">r<sup>2</sup></span></td>
</tr>
<tr>
<td height="55">in 3 dimensions a cube has volume <span class="large">r<sup>3</sup></span></td>
</tr>
<tr>
<td height="55">etc (yes we can have 4 and more dimensions in mathematics). </td>
</tr>
</table>
<p>&nbsp;</p>
<div class="words">
<p>Geometric Sequences are sometimes called Geometric Progressions (G.P.s)</p>
</div>
<h2>Summing a Geometric Series</h2>
<p><b>To sum these:</b></p>
<p align="center"><span class="large">a + ar + ar<sup>2</sup> + ... + ar<sup>(n-1)</sup></span> </p>
<p align="center">(Each term is <span class="large">ar<sup>k</sup></span>, where k starts at 0 and goes up to n-1)</p>
<p><b>We can use this handy formula:</b></p>
<p align="center"><img src="images/partial-sum-i.gif" alt="Sigma" width="195" height="54" /><br />
<br />
<b>a</b> is the first term <br />
<b>r</b> is the <b>&quot;common ratio&quot;</b> between terms <br />
<b>n</b> is the number of terms </p>
<div class="center80">
<p><i>What is that funny &Sigma; symbol?</i> It is called <a href="sigma-notation.html">Sigma Notation</a></p>
<table border="0" align="center">
<tr>
<td><img src="images/sigma.gif" alt="Sigma" width="32" height="34" /></td>
<td>(called Sigma) means &quot;sum up&quot;</td>
</tr>
</table>
<p>And below and above it are shown the starting and ending values:</p>
<p align="center"><img src="images/sigma-notation.svg" alt="Sigma Notation" /></p>
<p align="center">It says &quot;Sum up <i><b>n</b></i> where <i><b>n</b></i> goes from 1 to 4. Answer=<b>10</b></p>
</div>
<p>The formula is easy to use ... just &quot;plug in&quot; the values of <b>a</b>, <b>r</b> and <b>n</b></p>
<div class="example">
<h3>Example: Sum the first 4 terms of</h3>
<div class="simple">
<table align="center">
<tr>
<td><font size="+1"> 10, 30, 90, 270, 810, 2430, </font><font size="+1" class="large"> ...</font></td>
</tr>
</table>
</div>
<p align="center">This sequence has a factor of 3 between each number.</p>
<p>&nbsp;</p>
<p>The values of <b>a</b>, <b>r</b> and <b>n</b> are:</p>
<ul>
<li><b>a = 10</b> (the first term) </li>
<li><b>r = 3</b> (the &quot;common ratio&quot;)</li>
<li><b>n = 4</b> (we want to sum the first 4 terms)</li>
</ul>
<p>So:</p>
<p align="center"><img src="images/partial-sum-i.gif" alt="Sigma" width="195" height="54" /></p>
<p>Becomes:</p>
<p align="center"><img src="images/partial-sum-k2.gif" alt="Sigma" width="290" height="57" /></p>
<p>You can check it yourself:</p>
<p align="center" class="larger">10 + 30 + 90 + 270 = 400</p>
<p>And, yes, it is easier to just add them <i>in this example</i>, as there are only 4 terms. But imagine adding 50 terms ... then the formula is much easier.</p>
</div>
<h2>Using the Formula</h2>
<p>Let's see the formula in action:</p>
<div class="example">
<h3>Example: Grains of Rice on a Chess Board</h3>
<p style="float:right; margin: 0 0 5px 10px;"><a href="../games/chess.html"><img src="../images/chess-board.gif" alt="chess board" width="150" height="149" /></a></p>
<p>On the page <a href="../binary-digits.html">Binary Digits</a> we give an example of grains of rice on a chess board. The question is asked: </p>
<p>When we place rice on a chess board:</p>
<ul>
<li>1 grain on the first square, </li>
<li>2 grains on the second square, </li>
<li>4 grains on the third and so on, </li>
<li>...</li>
</ul>
<p align="center">... <b>doubling</b> the grains of rice on each square ... </p>
<p align="center"><b>... how many grains of rice in total?</b></p>
<p>So we have:</p>
<ul>
<li><b>a = 1</b> (the first term)</li>
<li><b>r = 2</b> (doubles each time)</li>
<li><b>n = 64</b> (64 squares on a chess board)</li>
</ul>
<p>So:</p>
<p align="center"><img src="images/partial-sum-i.gif" alt="Sigma" width="195" height="54" /></p>
<p>Becomes:</p>
<p align="center"><img src="images/partial-sum-j2.gif" alt="Sigma" width="204" height="58" /></p>
<p>&nbsp;</p>
<p align="center" class="large">= <span class="intbl"><em>1&minus;2<sup>64</sup></em><strong>&minus;1</strong></span> = 2<sup>64</sup> &minus; 1 </p>
<p align="center" class="large">= 18,446,744,073,709,551,615 </p>
<p>Which was exactly the result we got on the <a href="../binary-digits.html">Binary Digits</a> page (thank goodness!)</p>
</div>
<p>And another example, this time with <b>r</b> less than 1:</p>
<div class="example">
<h3>Example: Add up the first 10 terms of the Geometric Sequence that halves each time:</h3>
<h3 align="center"> { 1/2, 1/4, 1/8, 1/16, ... }</h3>
<p>The values of <b>a</b>, <b>r</b> and <b>n</b> are:</p>
<ul>
<li><b>a = &frac12;</b> (the first term)</li>
<li><b>r = &frac12;</b> (halves each time)</li>
<li><b>n = 10</b> (10 terms to add)</li>
</ul>
<p>So:</p>
<p align="center"><img src="images/partial-sum-i.gif" alt="Sigma" width="195" height="54" /></p>
<p>Becomes:</p>
<p align="center"><img src="images/partial-sum-i2.gif" alt="Sigma" width="239" height="180" /></p>
<p align="center" class="larger">Very close to 1.</p>
<p><i>(Question: if we continue to increase <span class="large">n</span>, what happens?)</i></p>
</div>
<h2>Why Does the Formula Work?</h2>
<p>Let's see <b>why</b> the formula works, because we get to use an interesting &quot;trick&quot; which is worth knowing.</p>
<div class="tbl">
<div class="row"><span class="left"><b>First</b>, call the whole sum <b>&quot;S&quot;</b>:</span><span class="right"><span class="large">&nbsp;&nbsp;S&nbsp;= a + ar + ar<sup>2</sup> + ... + ar<sup>(n&minus;2)</sup></span><span class="large">+ ar<sup>(n&minus;1)</sup></span></span></div>
<div class="row"><span class="left"><b>Next</b>, multiply <b>S</b> by <b>r</b>:</span><span class="right"><span class="large">S&middot;r&nbsp;= ar + ar<sup>2</sup> + ar<sup>3</sup> + ... + ar<sup>(n&minus;1)</sup> + ar<sup>n</sup></span></span></div>
</div>
<p align="center" class="larger">Notice that <span class="large">S</span> and <span class="large">S&middot;r</span> are similar?</p>
<p class="larger">Now <b>subtract</b> them!</p>
<p align="center"><img src="images/geometric-sum-proof.svg" alt="Proof" /></p>
<p align="center"><b>Wow! All the terms in the middle neatly cancel out. </b><br />
(Which is a neat trick)</p>
<p>By subtracting <span class="large">S&middot;r</span> from <span class="large">S</span> we get a simple result:</p>
<div class="center80">
<p align="center" class="large">S &minus; S&middot;r = a &minus; ar<sup>n</sup></p>
</div>
<p>Let's rearrange it to find <span class="large">S</span>:</p>
<div class="tbl">
<div class="row"><span class="left">Factor out <b>S</b> and <b>a</b>:</span><span class="right"><span class="larger">S(1<span class="large">&minus;</span>r) = a(1<span class="large">&minus;</span>r<sup>n</sup>)</span></span></div>
<div class="row"><span class="left">Divide by <b>(1&minus;r)</b>:</span><span class="right"><span class="larger">S = <span class="intbl">
<em>a(1<span class="large">&minus;</span>r<sup>n</sup>)</em>
<strong>(1<span class="large">&minus;</span>r)</strong>
</span></span></span></div>
</div>
<p>Which is our formula (ta-da!):</p>
<p align="center"><img src="images/partial-sum-i.gif" alt="Sigma" width="195" height="54" /></p>
<p>&nbsp;</p>
<h2>Infinite Geometric Series</h2>
<p>So what happens when <span class="large">n</span> goes to <b>infinity</b>? </p>
<p>We can use this formula: </p>
<p align="center"><img src="images/geometric-infinite-sum.gif" alt="Sigma" width="189" height="55" /></p>
<p>But <b>be careful</b>:</p>
<div class="center80">
<p align="center" class="larger"><b>r</b> must be between (but not including) <b>&minus;1 and 1</b></p>
<p align="center">and <b>r should not be 0</b> because the sequence {a,0,0,...} is not geometric</p>
</div>
<p>So our infnite geometric series has a <b>finite sum</b> when the ratio is less than 1 (and greater than &minus;1)</p>
<p>Let's bring back our previous example, and see what happens:</p>
<div class="example">
<h3>Example: Add up ALL the terms of the Geometric Sequence that halves each time:</h3>
<h3 align="center"> { <span class="intbl"><em>1</em><strong>2</strong></span>, <span class="intbl"><em>1</em><strong>4</strong></span>, <span class="intbl"><em>1</em><strong>8</strong></span>, <span class="intbl"><em>1</em><strong>16</strong></span>, ... }</h3>
<p>We have:</p>
<ul>
<li><b>a = &frac12;</b> (the first term)</li>
<li><b>r = &frac12;</b> (halves each time)</li>
</ul>
<p>And so:</p>
<p align="center"><img src="images/geometric-infinite-sum-b.gif" alt="Sigma" width="225" height="62" /></p>
<p align="center" class="large">= <span class="intbl"><em>&frac12;&times;1</em><strong>&frac12;</strong></span> = 1</p>
<p>Yes, adding <b><span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>1</em><strong>4</strong></span> + <span class="intbl"><em>1</em><strong>8</strong></span> + ...</b> etc equals <b>exactly 1</b>.</p>
</div>
<table border="0" align="center">
<tr>
<td align="center"><p>Don't believe me? Just look at this square:</p>
<p>By adding up <b><span class="intbl"><em>1</em><strong>2</strong></span> + <span class="intbl"><em>1</em><strong>4</strong></span> + <span class="intbl"><em>1</em><strong>8</strong></span> + ...</b></p>
<p>we end up with the whole thing!</p></td>
<td align="center">&nbsp;</td>
<td><span class="center"><img src="images/infinite-series-1-2n.svg" alt="Sum of 1/2^n as boxes" /></span></td>
</tr>
</table>
<h2>Recurring Decimal</h2>
<p>On another page we asked <a href="../9recurring.html">&quot;Does 0.999... equal 1?&quot;</a>, well, let us see if we can calculate it:</p>
<div class="example">
<h3>Example: Calculate 0.999...</h3>
<p>We can write a recurring decimal as a sum like this:</p>
<p align="center"><img src="images/geometric-infinite-sum-d.gif" alt="Sigma" width="398" height="120" /> </p>
<p>And now we can use the formula:</p>
<p align="center"><img src="images/geometric-infinite-sum-e.gif" alt="Sigma" width="403" height="54" /></p>
<p align="center">&nbsp;</p>
<p>Yes! 0.999... <i><b>does</b></i> equal 1.</p>
</div>
<p>&nbsp;</p>
<p>So there we have it ... Geometric Sequences (and their sums) can do all sorts of amazing and powerful things.</p>
<div class="questions">
<script type="text/javascript">getQ(1755, 608, 609, 610, 611, 8300, 1256, 1257, 1258, 1255, 176);</script>&nbsp;
</div>
<div class="related"><a href="sequences-series.html">Sequences</a> <a href="sequences-sums-arithmetic.html">Arithmetic Sequences and Sums</a> <a href="sigma-notation.html">Sigma Notation</a> <a href="index.html">Algebra Index</a></div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright &copy; 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body>
<!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/sequences-sums-geometric.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:59:55 GMT -->
</html>