lkarch.org/tools/mathisfun/www.mathsisfun.com/algebra/quadratic-equation-real-world.html
Lucas Kent e39465ad2f Changes to be committed:
new file:   Files/flashplayer_32_sa.exe
	new file:   favicon.ico
	new file:   globe.gif
	new file:   imgs/download.png
	new file:   imgs/zuck.jpg
	new file:   index.html
	new file:   other.ico
	new file:   script.js
	new file:   site.webmanifest
	new file:   sitemap.html
	new file:   styles/backround.css
	new file:   styles/border.css
	new file:   styles/fonts/Titillium_Web/OFL.txt
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Black.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Bold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-BoldItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLight.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-ExtraLightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Italic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Light.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-LightItalic.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-Regular.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBold.ttf
	new file:   styles/fonts/Titillium_Web/TitilliumWeb-SemiBoldItalic.ttf
	new file:   styles/fonts/webfontkit-20221027-163353/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-163353/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-demo.html
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-163353/titilliumweb-extralight-webfont.woff2
	new file:   styles/fonts/webfontkit-20221027-165950/generator_config.txt
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/grid_12-825-55-15.css
	new file:   styles/fonts/webfontkit-20221027-165950/specimen_files/specimen_stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/stylesheet.css
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-demo.html
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff
	new file:   styles/fonts/webfontkit-20221027-165950/titilliumweb-bold-webfont.woff2
	new file:   styles/style.css
	new file:   tools/2048/.gitignore
	new file:   tools/2048/.jshintrc
	new file:   tools/2048/CONTRIBUTING.md
	new file:   tools/2048/LICENSE.txt
	new file:   tools/2048/README.md
	new file:   tools/2048/Rakefile
	new file:   tools/2048/favicon.ico
	new file:   tools/2048/index.html
	new file:   tools/2048/js/animframe_polyfill.js
	new file:   tools/2048/js/application.js
	new file:   tools/2048/js/bind_polyfill.js
	new file:   tools/2048/js/classlist_polyfill.js
	new file:   tools/2048/js/game_manager.js
	new file:   tools/2048/js/grid.js
	new file:   tools/2048/js/html_actuator.js
	new file:   tools/2048/js/keyboard_input_manager.js
	new file:   tools/2048/js/local_storage_manager.js
	new file:   tools/2048/js/tile.js
    new file:   tools/2048/meta/apple-touch-icon.png
	new file:   tools/webretro/cores/neocd_libretro.js
	new file:   tools/webretro/cores/neocd_libretro.wasm
	new file:   tools/webretro/cores/nestopia_libretro.js
	new file:   tools/webretro/cores/nestopia_libretro.wasm
	new file:   tools/webretro/cores/o2em_libretro.js
	new file:   tools/webretro/cores/o2em_libretro.wasm
	new file:   tools/webretro/cores/opera_libretro.js
	new file:   tools/webretro/cores/opera_libretro.wasm
2022-11-02 08:40:01 -04:00

383 lines
22 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><!-- #BeginTemplate "/Templates/Main.dwt" --><!-- DW6 -->
<!-- Mirrored from www.mathsisfun.com/algebra/quadratic-equation-real-world.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:07 GMT -->
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<!-- #BeginEditable "doctitle" -->
<title>Real World Examples of Quadratic Equations</title>
<script language="JavaScript" type="text/javascript">reSpell=[["meters","metres"]];</script>
<meta name="description" content="Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. For K-12 kids, teachers and parents.">
<!-- #EndEditable -->
<meta name="keywords" content="math, maths, mathematics, school, homework, education">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="HandheldFriendly" content="true">
<meta http-equiv="pics-label" content="(PICS-1.1 &quot;http://www.classify.org/safesurf/&quot; L gen true for &quot;http://www.mathsisfun.com&quot; r (SS~~000 1))">
<link rel="stylesheet" type="text/css" href="../style3.css">
<script src="../main3.js" type="text/javascript"></script>
</head>
<body id="bodybg">
<div class="bg">
<div id="stt"></div>
<div id="hdr"></div>
<div id="logo"><a href="../index.html"><img src="../images/style/logo.svg" alt="Math is Fun"></a></div>
<div id="gtran">
<script type="text/javascript">document.write(getTrans());</script></div>
<div id="gplus">
<script type="text/javascript">document.write(getGPlus());</script></div>
<div id="adTopOuter" class="centerfull noprint">
<div id="adTop">
<script type="text/javascript">document.write(getAdTop());</script>
</div>
</div>
<div id="adHide">
<div id="showAds1"><a href="javascript:showAds()">Show Ads</a></div>
<div id="hideAds1"><a href="javascript:hideAds()">Hide Ads</a><br>
<a href="../about-ads.html">About Ads</a></div>
</div>
<div id="menuWide" class="menu">
<script type="text/javascript">document.write(getMenu(0));</script>
</div>
<div id="linkto">
<div id="linktort">
<script type="text/javascript">document.write(getLinks());</script></div>
</div>
<div id="search" role="search">
<script type="text/javascript">document.write(getSearch());</script></div>
<div id="menuSlim" class="menu">
<script type="text/javascript">document.write(getMenu(1));</script>
</div>
<div id="menuTiny" class="menu">
<script type="text/javascript">document.write(getMenu(2));</script>
</div>
<div id="extra"></div>
</div>
<div id="content" role="main"><!-- #BeginEditable "Body" -->
<h1 class="center">Real World Examples of<br>
Quadratic Equations</h1>
<p>A <b>Quadratic Equation</b> looks like this:</p>
<p align="center"><img src="images/quadratic-equation-reason.svg" alt="Quadratic Equation"></p>
<p><a href="quadratic-equation.html">Quadratic equations</a> pop up in many real world situations! </p>
<p>Here we have collected some examples for you, and solve each using different methods: </p>
<ul>
<li><a href="factoring-quadratics.html">Factoring Quadratics</a></li>
<li><a href="completing-square.html">Completing the Square</a></li>
<li><a href="quadratic-equation-graphing.html">Graphing Quadratic Equations</a></li>
<li><a href="quadratic-equation.html">The Quadratic Formula</a></li>
<li><a href="../quadratic-equation-solver.html">Online Quadratic Equation Solver</a></li>
</ul>
<p>Each example follows three general stages:</p>
<ul>
<li>Take the real world description and make some equations </li>
<li>Solve!</li>
<li>Use your common sense to interpret the results</li>
</ul>
<p>&nbsp;</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/ball-throw.jpg" alt="ball throw" height="283" width="110"></p>
<h2>Balls, Arrows, Missiles and Stones</h2>
<p>When you throw a ball (or shoot an arrow, fire a missile or throw a stone) it goes up into the air, slowing as it travels, then comes down again faster and faster ...</p>
<p class="center larger">... and a <a href="quadratic-equation.html">Quadratic Equation</a> tells you its position at all times!</p>
<p>&nbsp;</p>
<h2>Example: Throwing a Ball</h2>
<h3>A ball is thrown straight up, from 3 m above the ground, with a velocity of 14 m/s. When does it hit the ground?</h3>
<div class="simple">
<p>Ignoring air resistance, we can work out its height by adding up these three things:<br>
(Note: <b>t</b> is time in seconds)</p>
<table align="center" border="0">
<tbody>
<tr>
<td align="right">The height starts at 3 m:</td>
<td width="20">&nbsp;</td>
<td class="larger" align="center">3</td>
</tr>
<tr>
<td align="right">It travels upwards at 14 meters per second (14 m/s):</td>
<td>&nbsp;</td>
<td class="larger" align="center">14t</td>
</tr>
<tr>
<td align="right">Gravity pulls it down, changing its position by <i>about</i> 5 m per second squared:</td>
<td>&nbsp;</td>
<td class="larger" align="center" valign="bottom">5t<sup>2</sup></td>
</tr>
<tr>
<td><i>(Note for the enthusiastic: the <span class="larger">-5t<sup>2</sup></span> is simplified from <span class="larger">-(½)at<sup>2</sup></span> with a=9.8 m/s<sup>2</sup>)</i></td>
<td>&nbsp;</td>
<td class="larger" align="center" valign="bottom">&nbsp;</td>
</tr>
</tbody></table>
</div>
<p>Add them up and the height <b>h</b> at any time <b>t</b> is: </p>
<p class="center larger">h = 3 + 14t 5t<sup>2</sup></p>
<p> And the ball will hit the ground when the height is zero:</p>
<p class="center larger"> 3 + 14t 5t<sup>2</sup> = 0</p>
<p>Which is a <a href="factoring-quadratics.html">Quadratic Equation</a> ! </p>
<p>In "Standard Form" it looks like:</p>
<p class="center larger">5t<sup>2</sup> + 14t + 3 = 0</p>
<p>It looks even better when we <span class="left">multiply all terms by 1</span>:</p>
<p class="center larger">5t<sup>2</sup> 14t 3 = 0</p>
<p>Let us solve it ...</p>
<p>&nbsp;</p>
<p>There are many ways to solve it, here we will factor it using the "Find two numbers that
multiply to give <b>a×c</b>, and add to give <b>b</b>" method in <a href="factoring-quadratics.html">Factoring Quadratics</a>:</p>
<p class="center">a×c = <b><span class="larger"></span>15</b>, and b = <b><span class="larger"></span>14</b>. </p>
<p>The factors of 15 are: 15, 5, 3, 1, 1, 3, 5, 15</p>
<p>By trying a few combinations we find that <b>15</b> and <b>1</b> work
(15×1 = 15,
and 15+1 = 14)</p>
<div class="tbl">
<div class="row"><span class="left">Rewrite middle with 15 and 1:</span><span class="right">5t<sup>2</sup> <span class="hilite"> 15t + t</span> 3 = 0</span></div>
<div class="row"><span class="left">Factor first two and last two:</span><span class="right">5t(t 3) + 1(t 3) = 0</span></div>
<div class="row"><span class="left">Common Factor is (t 3):</span><span class="right">(5t + 1)(t 3) = 0</span></div>
<div class="row"><span class="left">And the two solutions are:</span><span class="right">5t + 1 = 0 or t 3 = 0</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">t = <b>0.2</b>&nbsp; or &nbsp;t = <b>3</b></span></div>
</div>
<p>The "t = 0.2" is a negative time, impossible in our case.</p>
<p>The "t = 3" is the answer we want:</p>
<p class="center larger">The ball hits the ground after 3 seconds!</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/quadratic-1a.gif" alt="quadratic graph ball" height="309" width="174"></p>
<p>Here is the graph of the <a href="../geometry/parabola.html">Parabola</a><span class="larger"> h = 5t<sup>2</sup> + 14t + 3</span></p>
<p>It shows you the <b>height</b> of the ball vs <b>time</b></p>
<p>Some interesting points:</p>
<p><span class="large">(0,3)</span> When t=0 (at the start) the ball is at 3 m</p>
<p><span class="large">(0.2,0)</span> says that 0.2 seconds BEFORE we threw the ball it was at ground level. This never happened! So our common sense says to ignore it.</p>
<p> <span class="large">(3,0)</span> says that at 3 seconds the ball is at ground level.</p>
<p>Also notice that the ball goes <b>nearly 13 meters</b> high.</p>
<div style="clear:both"></div>
<div class="center80">
<p>Note: You can find exactly where the top point is! </p>
<p>The method is explained in <a href="quadratic-equation-graphing.html">Graphing Quadratic Equations</a>, and has two steps:</p>
<p>Find where (along the horizontal axis) the top occurs using <b>b/2a</b>:</p>
<ul>
<li>t = b/2a = (14)/(2 × 5) = 14/10 = <b>1.4 seconds</b></li>
</ul>
<p>Then find the height using that value (1.4)</p>
<ul>
<li>h = 5t<sup>2</sup> + 14t + 3 = 5(1.4)<sup>2</sup> + 14 × 1.4 + 3 = <b>12.8 meters</b></li>
</ul>
<p>So the ball reaches the highest point of 12.8 meters after 1.4 seconds.</p>
</div><p>&nbsp;</p>
<table border="0">
<tbody>
<tr>
<td><img src="images/bike.jpg" alt="bike" height="100" width="154"></td>
<td>&nbsp;</td>
<td>
<h2>Example: New Sports Bike</h2>
<p>You have designed a new style of sports bicycle!</p>
<p>Now you want to make lots of them and sell them for profit.</p></td>
</tr>
</tbody></table>
<p>Your <b>costs</b> are going to be:</p>
<ul>
<li>$700,000 for manufacturing set-up costs, advertising, etc</li>
<li>$110 to make each bike</li>
</ul>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/graph-bike-demand.svg" alt="graph bike demand curve"></p>
<p>Based on similar bikes, you can expect <b>sales</b> to follow this "Demand Curve":</p>
<ul>
<li>Unit Sales = 70,000 200P</li>
</ul>
<p>Where "P" is the price. </p>
<p>For example, if you set the price:</p>
<ul>
<li>at $0, you just give away 70,000 bikes </li>
<li>at $350, you won't sell any bikes at all</li>
<li>at $300 you might sell <b>70,000 200×300 = 10,000</b> bikes</li>
</ul>
<p>So ... what is the best price? And how many should you make? </p>
<p><b>Let us make some equations!</b></p>
<p>How many you sell depends on price, so use "P" for Price as the variable</p>
<ul>
<li>Unit Sales = 70,000 200P</li>
<li>Sales in Dollars = Units × Price = (70,000 200P) × P = 70,000P 200P<sup>2</sup></li>
<li>Costs = 700,000 + 110 x (70,000 200P) = 700,000 + 7,700,000 22,000P = 8,400,000 22,000P</li>
<li>Profit = Sales-Costs = 70,000P 200P<sup>2</sup> (8,400,000 22,000P) = 200P<sup>2</sup> + 92,000P 8,400,000</li>
</ul>
<p class="large center">Profit = 200P<sup>2</sup> + 92,000P 8,400,000</p>
<p>Yes, a Quadratic Equation. Let us solve this one by <a href="completing-square.html">Completing the Square</a>.</p>
<div class="example">
<h3> Solve: 200P<sup>2</sup> + 92,000P 8,400,000 = 0</h3>
<p><b>Step 1</b> Divide all terms by -200</p>
<div class="so"> P<sup>2</sup> 460P + 42000 = 0</div>
<p> <b>Step 2</b> Move the number term to the right side of the equation:</p>
<div class="so">P<sup>2</sup> 460P = -42000</div>
<p><b>Step 3</b> Complete the square on the left side of the equation and balance this by adding the same number to the right side of the equation:</p>
<p>(b/2)<sup>2</sup> = (460/2)<sup>2</sup> = (230)<sup>2</sup> = 52900</p>
<div class="so">P<sup>2</sup> 460P + 52900 = 42000 + 52900</div>
<div class="so">(P 230)<sup>2</sup> = 10900</div>
<p><b>Step 4</b> Take the square root on both sides of the equation:</p>
<div class="so"> P 230 = ±√10900 = ±104 (to nearest whole number)</div>
<p><b>Step 5</b> Subtract (-230) from both sides (in other words, add 230):</p>
<div class="so"> P = 230 ± 104 = 126 or 334</div>
</div>
<p>What does that tell us? It says that the profit is ZERO when the Price is $126 or $334</p>
<p>But we want to know the maximum profit, don't we? </p>
<p><b>It is exactly half way in-between!</b><span class="larger"> At $230</span></p>
<p>And here is the graph:</p>
<p class="center larger"><img src="images/graph-bike-profit.svg" alt="graph bike profit best"><br>
Profit = 200P<sup>2</sup> + 92,000P 8,400,000</p>
<p>The best sale price is <b>$230</b>, and you can expect:</p>
<ul>
<li>Unit Sales = 70,000 200 x 230 = 24,000 </li>
<li>Sales in Dollars = $230 x 24,000 = $5,520,000</li>
<li>Costs = 700,000 + $110 x 24,000 = $3,340,000</li>
<li>Profit = $5,520,000 $3,340,000 = <b>$2,180,000</b></li>
</ul>
<p>A very profitable venture.</p>
<h2>Example: Small Steel Frame</h2>
<p style="float:left; margin: 0 10px 5px 0;"><img src="images/quadratic-4a.gif" alt="area=28" height="121" width="171"></p>
<p>Your company is going to make frames as part of a new product they are launching.</p>
<p>The frame will be cut out of a piece of steel, and to keep the weight down, the final area should be <b>28 cm<sup>2</sup></b></p>
<p>The inside of the frame has to be<b> 11 cm by 6 cm</b></p>
<p>What should the width <b>x</b> of the metal be?</p>
<p>Area of steel before cutting:</p>
<div class="so"> Area = (11 + 2x) × (6 + 2x) cm<sup>2</sup></div>
<div class="so"> Area = 66 + 22x + 12x + 4x<sup>2</sup></div>
<div class="so"> Area = 4x<sup>2</sup> + 34x + 66 </div>
<p>Area of steel after cutting out the 11 × 6 middle:</p>
<div class="so"> Area = 4x<sup>2</sup> + 34x + 66 66</div>
<div class="so"> Area = 4x<sup>2</sup> + 34x</div>
<p style="float:right; margin: 0 0 5px 10px;"><img src="images/quadratic-4c.svg" alt="quadratic 4x^2 + 34x"></p>
<h3>Let us solve this one <a href="quadratic-equation-graphing.html">graphically</a>!</h3>
<p class="right">Here is the graph of <span class="larger">4x<sup>2</sup> + 34x</span> :</p>
<p>The desired area of <b>28</b> is shown as a horizontal line.</p>
<p>The area equals 28 cm<sup>2</sup> when:</p>
<p class="center"><b>x is <i>about</i> 9.3 or 0.8</b></p>
<p>The negative value of <b>x</b> make no sense, so the answer is:</p>
<p class="large center">x = 0.8 cm (approx.)</p>
<p>&nbsp;</p>
<h2>Example: River Cruise</h2>
<h3>A 3 hour river cruise goes 15 km upstream and then back again. The river has a current of 2 km an hour. What is the boat's speed and how long was the upstream journey? </h3>
<p style="float:left; margin: 0 30px 5px 0;"><img src="images/river-boat.svg" alt="river sketch"></p>
<p>There are two speeds to think about: the speed the boat makes in the water, and the speed relative to the land:</p>
<ul>
<li>Let <b>x</b> = the boat's speed in the water (km/h)</li>
<li>Let <b>v</b> = the speed relative to the land (km/h)</li>
</ul>
<p>Because the river flows downstream at 2 km/h:</p>
<ul>
<li>when going upstream, <b>v = x2</b> (its speed is reduced by 2 km/h)</li>
<li>when going downstream, <b>v = x+2</b> (its speed is increased by 2 km/h)</li>
</ul>
<p>We can turn those speeds into times using:</p>
<p class="larger" align="center">time = distance / speed</p>
<p align="center">(to travel 8 km at 4 km/h takes 8/4 = 2 hours, right?)</p>
<p>And we know the total time is 3 hours:</p>
<p class="larger" align="center">total time = time upstream + time downstream = 3 hours</p>
<p>Put all that together:</p>
<p align="center"><span class="larger">total time = 15/(x2) + 15/(x+2) = 3 hours</span></p>
<p>Now we use our algebra skills to solve for "x".</p>
<p>First, get rid of the fractions by multiplying through by <b>(x-2)</b><b>(x+2)</b>: </p>
<p class="larger" align="center">3(x-2)(x+2) = 15(x+2) + 15(x-2)</p>
<p>Expand everything:</p>
<p class="larger" align="center">3(x<sup>2</sup>4) = 15x+30 + 15x30</p>
<p>Bring everything to the left and simplify:<b></b></p>
<p class="larger" align="center">3x<sup>2</sup> 30x 12 = 0</p>
<p>It is a Quadratic Equation! Let us solve it using the <a href="quadratic-equation.html">Quadratic Formula</a>:</p>
<p class="center"><img src="images/quadratic-formula.svg" alt="Quadratic Formula: x = [ -b (+-) sqrt(b^2 - 4ac) ] / 2a"></p>
<p class="center">Where <b>a</b>, <b>b</b> and <b>c</b> are
from the <br>
Quadratic Equation in "Standard Form": <b>ax<sup>2</sup> + bx + c = 0</b></p>
<div class="example">
<h3>Solve 3x<sup>2</sup> - 30x - 12 = 0</h3>
<div class="tbl">
<div class="row"><span class="left"><b>Coefficients are:</b></span><span class="right"><span class="center"><b>a = 3</b>, <b>b = 30</b> and <b>c = 12</b></span></span></div>
<div class="row"><span class="left"><b>Quadratic Formula:</b></span><span class="right">x = [ b ± √(b<sup>2</sup>4ac) ] / 2a</span></div>
<div class="row"><span class="left"><b>Put in a, b and c:</b></span><span class="right">x = [ (30) ± √((30)<sup>2</sup>4×3×(12)) ] / (2×3)</span></div>
<div class="row"><span class="left"><b>Solve</b>:</span><span class="right">x = [ 30 ± √(900+144) ] / 6</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">x = [ 30 ± √(1044) ] / 6</span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">x = ( 30 ± 32.31 ) / 6 </span></div>
<div class="row"><span class="left">&nbsp;</span><span class="right">x = 0.39 <b>or</b> 10.39</span></div>
</div>
<p>&nbsp;</p>
<p class="center "><span class="larger"><b>Answer:</b> x = 0.39 <b>or</b> 10.39</span> (to 2 decimal places)</p>
</div>
<p>x = 0.39 makes no sense for this real world question, but x = 10.39 is just perfect!</p>
<p align="center">Answer: <span class="large">Boat's Speed = 10.39 km/h </span>(to 2 decimal places)</p>
<p align="center">And so the upstream journey = 15 / (10.392) = 1.79 hours = <span class="large">1 hour 47min</span></p>
<p align="center">And the downstream journey = 15 / (10.39+2) = 1.21 hours = <span class="large">1 hour 13min</span></p>
<p>&nbsp;</p>
<h2>Example: Resistors In Parallel </h2>
<p>Two resistors are in parallel, like in this diagram:</p>
<p class="center"><img src="images/quadratic-3b.gif" alt="quadratic resistors R1 and R1+3" height="113" width="348"></p>
<p>The total resistance has been measured at 2 Ohms, and one of the resistors is known to be 3 ohms more than the other. </p>
<p>What are the values of the two resistors?</p>
<p>The formula to work out total resistance "R<sub>T</sub>" is: </p>
<p class="center larger"><span class="intbl"><em>1</em><strong>R<sub>T</sub></strong>
</span>&nbsp; = &nbsp;<span class="intbl">
<em>1</em><strong>R<sub>1</sub></strong></span> + <span class="intbl"><em>1</em><strong>R<sub>2</sub></strong></span></p>
<p>In this case, we have R<sub>T</sub> = 2 and R<sub>2</sub> = R<sub>1</sub> + 3 </p>
<p class="center larger"><span class="intbl">
<em>1</em>
<strong>2</strong>
</span>&nbsp; = &nbsp;<span class="intbl">
<em>1</em>
<strong>R<sub>1</sub></strong>
</span> + <span class="intbl">
<em>1</em>
<strong>R<sub>1</sub>+3</strong>
</span></p>
<p>To get <span class="left">rid of the fractions we
can multiply all terms by 2R<sub>1</sub>(R<sub>1</sub> + 3)</span> and then simplify:</p>
<div class="tbl">
<div class="row"><span class="left">Multiply all terms by 2R<sub>1</sub>(R<sub>1</sub> + 3):</span><span class="right"><span class="intbl"><em>2R<sub>1</sub>(R<sub>1</sub>+3)</em><strong>2</strong></span> = <span class="intbl"><em>2R<sub>1</sub>(R<sub>1</sub>+3)</em><strong>R<sub>1</sub></strong></span> + <span class="intbl"><em>2R<sub>1</sub>(R<sub>1</sub>+3)</em><strong>R<sub>1</sub>+3</strong></span></span></div>
<div class="row"><span class="left">Then simplify:</span><span class="right">R<sub>1</sub>(R<sub>1</sub> + 3) = 2(R<sub>1</sub> + 3) + 2R<sub>1</sub></span></div>
<div class="row"><span class="left">Expand: </span><span class="right">R<sub>1</sub><sup>2</sup> + 3R<sub>1</sub> = 2R<sub>1</sub> + 6 + 2R<sub>1</sub></span></div>
<div class="row"><span class="left">Bring all terms to the left:</span><span class="right">R<sub>1</sub><sup>2</sup> + 3R<sub>1</sub> 2R<sub>1</sub> 6 2R<sub>1</sub> = 0</span></div>
<div class="row"><span class="left">Simplify:</span><span class="right"><span class="center">R<sub>1</sub><sup>2</sup> R<sub>1</sub> 6 = 0</span></span></div>
</div>
<p>Yes! A Quadratic Equation !</p>
<p>Let us solve it using our <a href="../quadratic-equation-solver.html">Quadratic Equation Solver</a>. </p>
<ul>
<li>Enter 1, 1 and 6 </li>
<li>And you should get the answers 2 and 3</li>
</ul>
<p> <span class="center">R<sub>1</sub></span> cannot be negative, so <span class="center"><b>R<sub>1</sub></b></span><b> = 3 Ohms</b> is the answer.</p>
<p class="center larger"> The two resistors are 3 ohms and 6 ohms.</p>
<p>&nbsp;</p>
<h2>Others</h2>
<p> Quadratic Equations are useful in many other areas:</p>
<p style="float:left; margin: 0 10px 5px 0;"><img src="../geometry/images/parabolic-dish.jpg" alt="parabolic dish" height="109" width="116"></p>
<p>For a parabolic mirror, a reflecting telescope or a satellite dish, the shape is defined by a quadratic equation.</p>
<p>Quadratic equations are also needed when studying lenses and curved mirrors.</p>
<p>And many questions involving time, distance and speed need quadratic equations.</p>
<p>&nbsp;</p>
<div class="related">
<a href="quadratic-equation.html">Quadratic Equations</a>
<a href="factoring-quadratics.html">Factoring Quadratics</a>
<a href="completing-square.html">Completing the Square</a>
<a href="quadratic-equation-graphing.html">Graphing Quadratic Equations</a>
<a href="../quadratic-equation-solver.html">Quadratic Equation Solver</a>
<a href="index.html">Algebra Index</a>
</div>
<!-- #EndEditable --></div>
<div id="adend" class="centerfull noprint">
<script type="text/javascript">document.write(getAdEnd());</script>
</div>
<div id="footer" class="centerfull noprint">
<script type="text/javascript">document.write(getFooter());</script>
</div>
<div id="copyrt">
Copyright © 2017 MathsIsFun.com
</div>
<script type="text/javascript">document.write(getBodyEnd());</script>
</body><!-- #EndTemplate -->
<!-- Mirrored from www.mathsisfun.com/algebra/quadratic-equation-real-world.html by HTTrack Website Copier/3.x [XR&CO'2014], Sat, 29 Oct 2022 00:37:09 GMT -->
</html>